huybend's picture    

David Huyben

Position/Title: Assistant Professor
Phone: 519-824-4120 ext.54293
Office: ANNU 135

Personal site link
Google scholar site link
Research gate site link
LinkedIn site link
Twitter site link

Dr. Huyben is the Assistant Professor of Aquaculture at the University of Guelph in Ontario, Canada. He completed his PhD at the Swedish University of Agricultural Sciences in Uppsala, Sweden with a focus on yeast as a protein source and impacts on the blood physiology and gut microbiome of farmed rainbow trout and Arctic charr. Since then he pursued postdoctoral research at the University of Stirling within the Institute of Aquaculture where he investigated environmental stressors and omega-3 fatty acids requirements of farmed Atlantic salmon. He has also collaborated on aquaculture projects in Norway, Finland, France, Italy and across Canada with a range of research on fish farming technologies, aqua-feeds and pathogen control.

Dr. Huyben’s research program focuses on the nutrition, microbiome and health of farmed salmonid fishes, especially rainbow trout, lake whitefish and Atlantic salmon. Specifically, his studies involve feeding omega-3 fatty acids, single-cell proteins, insects and probiotics and investigating their effects on the growth performance, immune response and gut microbiome of fish using nutritional analyses, mass spectrometry, quantitative PCR and 16S rDNA next-generation sequencing. 

The aquaculture industry is faced with many challenges, such as quality feed and disease outbreaks, in Canada and around the globe. Dr. Huyben's research aims to replace fishmeal and fish oil with sustainable ingredients (e.g. insects and microbes) while meeting nutritional requirements of fish and improving immune defence and disease resistance. He routinely collaborates with feed and fish farming companies as well as government agencies and universities, both nationally and internationally with the aim to improve the sustainabillity, growth and resilience of the aquaculture industry.

Since June 2020, Dr. Huyben is employed to contribute 40% to research, 40% to education and 20% to industry liaison between the Canadian/Ontario aquaculture sector and the University of Guelph. Dr. Huyben is the lead instructor for Aquaculture: Advanced Issues (ANSC*3050), Advanced Animal Nutrition II (ANSC*6480) and supervises students in Research in Animal Biology I & II (ANSC*4700/4710). He mentors a handful of grad students in aquaculture projects that involve nutritional, molecular and data analysis skills and Dr. Huyben plans to train more students to become future aquaculture scientists and professionals. More about grad studies: here.

For more info, please email me at or click the links above to see my profiles on Google Scholar, Research Gate, LinkedIn or follow me on Twitter @DavidHuyben

Academic History

  • Bachelor of Science in Animal Biology, University of Guelph (2010)
  • Master of Science in Animal Biosciences (Aquaculture), University of Guelph (2013)
  • Doctor of Science in Animal Nutrition (Aquaculture), Swedish University of Agricultural Sciences (2017)

Teaching at UoG

Affiliations and Partnerships

  • Aquaculture Association of Canada (AAC) Member
  • Canadian Aquaculture Industry Alliance (CAIA) Member
  • Ontario Aquaculture Association (OAA) Member
  • European Aquaculture Society (EAS) Member
  • Swedish FRESH Fish Welfare Group Member
  • Aquaculture Research Collaborative Hub UK
  • Aquaculture UK Member

Aquaculture Centre

Dr. Huyben is the co-chair of the Aquaculture Centre along with Prof. Rich Moccia. The Aquaculture Centre is a centre for excellence at the University of Guelph and was established in 1988. It has been dedicated to integrating research and extension programs to contribute to the economic and environmental sustainability of the aquaculture sector.  

Graduate Students

MSc: Rebecca Lawson, Carmi Riesenbach, Junyu Zhang, Maddie Borland, Cody Anderson

PhD: Shuowen Cao (visiting)

Alumni: Yubing Chen

Current Research Projects

  • Improving fish health with insects, prebiotics and probiotics
  • In vitro method to simulate the fish gut microbiome of Atlantic salmon
    • Collaborators:
      • Dr. Emma Allen-Vercoe (Molecular & Cellular Biology Dept)
      • Dr. Torbjorn Lundh (Swedish University of Agricultural Sciences; SLU)
      • Dr. Aleks Vidakovic (SLU)
      • Dr. Parissa Norouzitallab (SLU)
      • Dr. Johan Diksved (SLU)
    • Undergrad and Grad Students:
      • Shuowen Cao (PhD)
      • Cody Anderson (BSc & MSc)
  • Antimicrobial resistance survey of aquaculture activities across Canada
    • Collaborators:
      • Dr. Marcia Chiasson (Ontario Aquaculture Research Centre)
      • Dr. Shawn Robinson (DFO)
      • Dr. Derek Smith (ECCC)
    • Undergrad and Grad Students:
      • Madeline Borland (MSc)

Selected Publications

  1. Zhan, X., Fletcher, L., Huyben, D., Cai, H., Dingle, S., Qi, N., Huber, L.A., Wang, B. and Li, J. (2023). Choline supplementation regulates gut microbiome diversity and gut epithelial activity in gilts. Frontiers in Nutrition, 10, 1101519.
  2. Chiasson, M., Kirk, M., & Huyben, D. (2023). Microbial control during the incubation of rainbow trout (Oncorhynchus mykiss) eggs exposed to humic acid. Frontiers in Aquaculture, 2, 1088072.  
  3. Huyben D., Cronin T., Bartie K., Matthew C., Sissener N., Hundal B., Homer H., Ruyter B., Glencross B. (2023). Steroidogenic and innate immune responses in Atlantic salmon are influenced by dietary total lipid, long chain PUFA and dissolved oxygen. Aquaculture, 564, 739028.
  4. Huyben, D., Grobler, T., Glencross, B. (2021). Digestible nutrient and energy values of corn and wheat glutens fed to Atlantic salmon (Salmo salar) are affected by feed processing method. Aquaculture, 544, 1-7.
  5. Huyben, D., Matthew, C., Muñoz-Lopez, P., Ruyter, B., Glencross, B. (2021). Hypoxia does not change responses to dietary omega-3 long-chain polyunsaturated fatty acids, but rather reduces dietary energy demand by Atlantic salmon. Aquaculture Nutrition. 1-15.
  6. Huyben, D., Grobler, T., Matthew, C., Bou, M., Ruyter, B. and Glencross, B. (2021). Requirement for omega-3 long-chain polyunsaturated fatty acids by Atlantic salmon is relative to the dietary lipid level. Aquaculture, 531, 735-805.
  7. Huyben, D, Chiasson, M, Lumsden, JS, Pham, PH & Chowdhury, MAK. (2021). Dietary microencapsulated blend of organic acids and plant essential oils affects intestinal morphology and microbiome of rainbow trout (Oncorhynchus mykiss). Microorganisms, 9(2063), 1-14.
  8. Glencross, B, Grobler, T & Huyben, D. (2021). Digestible nutrient and energy values of corn and wheat glutens fed to Atlantic salmon (Salmo salar) are affected by feed processing method. Aquaculture, 544, 1-7.
  9. Huyben D., Rimoldi S., Ceccotti C., Montero D., Betancor M., Iannini F., Terova G. (2020). Effect of dietary oil from Camelina sativa on the growth performance, fillet fatty acid profile and gut microbiome of gilthead Sea bream (Sparus aurata). PeerJ.
  10. Huyben D., Roehe B.K., Bekaert M., Ruyter B., Glencross, B. (2020). Dietary lipid:protein ratio and n-3 long-chain polyunsaturated fatty acids alters the gut microbiome of Atlantic salmon under hypoxic and normoxic conditions. Front. Microbiol.
  11. Glencross, B.D., Huyben, D. and Schrama, J.W. (2020). The application of single-cell ingredients in aquaculture feeds—a review. Fishes, 5(3), 1-22.
  12. Boyd, C.E., D'Abramo, L.R., Glencross, B.D., Huyben, D.C., Juarez, L.M., Lockwood, G.S., McNevin, A.A., Tacon, A.G., Teletchea, F., Tomasso Jr, J.R. and Tucker, C.S. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633.
  13. Vidakovic, A., Huyben, D., Sundh, H., Nyman, A., Vielma, J., Passoth, V., Lundh, T. (2020). Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus. Aquaculture Nutrition, 26(2), 275-286.
  14. Huyben, D., Vidakovic, A., Sundh, H., Sundell, K., Kiessling, A., Lundh, T. (2019). Haematological and intestinal health parameters of rainbow trout are influenced by dietary live yeast and increased water temperature. Fish & Shellfish Immunology, 89, 525-536.
  15. Huyben, D., Vidaković, A., Hallgren, S. W., Langeland, M. (2019). High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture, 500, 485-491.
  16. Huyben, D., Bevan, D., Stevenson, R., Zhou, H., Moccia, R. (2018). Evaluation of membrane filtration and UV irradiation to control bacterial loads in recirculation aquaculture systems. Aquaculture International, 26(6), 1531-1540.
  17. Huyben, D., Boqvist, S., Passoth, V., Renström, L., Bengtsson, U. A., Andréoletti, O., Vågsholm, I. (2018). Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste. Acta Veterinaria Scandinavica, 60(1), 9.
  18. Brijs, J., Sandblom, E., Axelsson, M., Sundell, K., Sundh, H., Huyben, D., Gräns, A. (2018). The final countdown: Continuous physiological welfare evaluation of farmed fish during common aquaculture practices before and during harvest. Aquaculture, 495, 903-911.
  19. Huyben, D., Sun, L., Moccia, R., Kiessling, A., Dicksved, J., & Lundh, T. (2018). Dietary live yeast and increased water temperature influence the gut microbiota of rainbow trout. Journal of Applied Microbiology, 124(6), 1377-1392.
  20. Huyben, D., Vidaković, A., Langeland, M., Nyman, A., Lundh, T., Kiessling, A. (2018). Effects of dietary yeast inclusion and acute stress on postprandial plasma free amino acid profiles of dorsal aorta-cannulated rainbow trout. Aquaculture Nutrition, 24(1), 236-246.
  21. Huyben, D., Nyman, A., Vidaković, A., Passoth, V., Moccia, R., Kiessling, A., Dicksved, J., Lundh, T. (2017). Effects of dietary inclusion of the yeasts S. cerevisiae and W. anomalus on gut microbiota of rainbow trout. Aquaculture, 473, 528-537.
  22. Nyman, A., Huyben, D., Lundh, T., Dicksved, J. (2017). Effects of microbe-and mussel-based diets on the gut microbiota in Arctic charr (Salvelinus alpinus). Aquaculture Reports, 5, 34-40.
  23. Huyben, D., Vidakovic, A., Nyman, A., Langeland, M., Lundh, T., Kiessling, A. (2016). Effects of dietary yeast inclusion and acute stress on post-prandial whole blood profiles of cannulated rainbow trout. Fish Physiology and Biochemistry, 43(2), 421–434.