
Installing Weka

Step1: Download and install the latest stable Weka release from: 
https://waikato.github.io/weka-wiki/downloading_weka/

Step 2: Install packages via Package Manager

- Start Weka
- Go to Tools à Package Manager

Step 3: Select all available packages and click install (takes approx. 10 min)

https://waikato.github.io/weka-wiki/downloading_weka/
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Summary

• The Weka Explorer

• Classification problems

• Regression problems

• Data-related artifacts
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Classification Problem 1

Data set: classification_iris.csv
• Number of data points: 150
• Number of classes: 3
• Number of attributes: 4

• SL: Sepal length (cm)
• SW: Sepal width (cm)
• PL: Petal length (cm)
• PW: Petal width (cm)

Iris setosa Iris versicolor Iris virginica
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Classification Problem 2

Data set: classification_random_binary.csv
• Number of data points: 100
• Number of classes: 2
• Number of attributes: 5

• Cow_id
• MS1
• MS2
• MS3
• MS4
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Classification Problem 3

Data set: classification_zoo_dataset.csv
• Number of data points: 101
• Number of classes: 7
• Number of attributes: 17

• animal_name
• Hair
• Feathers
• …
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Regression Problem 1

Data set: regression_linear_x_0_99_err0.csv
• Number of data points: 100
• Number of attributes: 1

• x
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Regression Problem 2

Data set: regression_quadratic.csv
• Number of data points: 100
• Number of attributes: 1

• x
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Regression Problem 3

Data set: regression_complex_func.csv
• Number of data points: 100
• Number of attributes: 4

• x
• y
• z
• t
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Regression Problem 4

Data set: regression_random.csv
• Number of data points: 100
• Number of attributes: 5

• Cow_id
• Ms1
• Ms2
• Ms3
• Ms4
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Data-Related Artifacts

• Formatting errors
• Special symbols
• Extra columns
• Duplicate header labels

• Hidden correlations
• Unnecessary columns directly correlated with the 

predictor variable
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Formatting Errors
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data_error1_column_50_special_symbol.csv

data_error2_extra_columns.csv



Formatting Errors
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header_error1_single_quote.csv

header_error2_duplicate_column_labels.csv



Formatting Errors
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header_error3_double_quotes.csv



Correlated features

• Lead to over-inflated predictions
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overinflated_acc_ded_column_E_is_dependent_on_A.csv



Last Year’s Presentation

• Theoretical aspects of Machine Learning (ML)
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Summary

• Machine Learning – general notions

• Types of problems
• Classification

• Decision trees
• Artificial neural networks

• Regression

• Clustering
• K-Nearest Neighbour

• Dimensionality reduction

• Developing ML models (practical considerations)

• Follow-up Hands-on/Demo Workshop
18



Learning
“Learning is any process by which a system improves performance from 

experience.” 
[ Herbert Simon (1916-2001), American economist, political scientist and cognitive psychologist ]

• Types of learning

• Supervised (inductive) learning
• Training data includes desired outputs
• E.g.: classification problems

• Unsupervised learning
• Training data does not include desired outputs
• E.g.: clustering problems

• Semi-supervised learning (hybrid)
• Training data includes a few desired outputs

• Reinforcement learning
• Rewards from sequence of actions
• E.g.: intelligent robots

19
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Machine learning (ML)

• The field of machine learning in concerned with the 
question of how to construct computer programs that 
automatically improve with experience.

Tom Mitchell, Machine Learning (1997)

• Get computers to program themselves

20https://dzone.com/articles/what-everyone-should-know-about-machine-learning

https://dzone.com/articles/what-everyone-should-know-about-machine-learning


Context

21https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

https://www.kdnuggets.com/2017/07/rapidminer-ai-machine-learning-deep-
learning.html

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://www.kdnuggets.com/2017/07/rapidminer-ai-machine-learning-deep-learning.html


Applications of ML
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How does it work?

• Step 1: The user provides the learning system with examples
of the concept to be learned or plain data.

• Step 2: The learning system algorithm infers/builds a 
characteristic model from these examples.

• Step 3: The model is used to predict quickly and with high 
accuracy whether or not future novel instances follow the 
model.
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When to use machine learning?

• When there are patterns in the data

• When we can not figure out the functional relationships 
mathematically 

• When we have a lot of (unlabeled) data

• Labeled training sets are harder to find or generate

• Data is in high-dimension 
• High dimension “features”
• Example: sensor data

• Want to “discover” lower-dimension representations
• Dimensionality reduction

24Inspired from: https://datatracker.ietf.org/meeting/92/materials/slides-92-sdnrg-0

https://datatracker.ietf.org/meeting/92/materials/slides-92-sdnrg-0


The Ultimate Goal of ML

• Generalization: the ability of a trained model to fit 
unseen instances

25
Training set (labels known) Test set (labels 

unknown)

This Photo by Unknown Author is licensed under CC BY-SA

cs.brown.edu/courses/cs143/2013/lectures/17.ppt

http://www.mrscienceshow.com/2010/06/bring-us-your-burning-science-questions.html
https://creativecommons.org/licenses/by-sa/3.0/
http://cs.brown.edu/courses/cs143/2013/lectures/17.ppt


Generalization

• Underfitting: model is too “simple” to represent all the relevant 
class characteristics
• High bias and low variance
• High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data
• Low bias and high variance
• Low training error and high test error
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Types of problems solved by ML
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https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications
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Types of problems solved by ML
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Classification
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Classification

• Given a set of observations: 
• (inputi, outputi) pairs, where outputi∈ {c1,c2,…}

• Find a function f, such that: f(inputi) = outputi
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Classification Problem Examples

• Classify tumors as malign 
or benign

• Classify protein 
secondary structures as 
𝛼-helices, 𝛽-sheets, coils 
or turns

• Classify mushrooms as 
edible or poisonous
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154116/

http://oregonstate.edu/instruct/bb450/450material/OutlineMaterials/4_5Proteins.html

https://www.ck12.org/book/Biology-%252528CA-DTI3%2525292/r3/section/14.5/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154116/
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Classification Problem Examples

• Classify ruminants 
chewing patterns

• Classify cattle behaviour 
based on ear tag, collar 
and halter sensors

• Classify cattle BCS based 
on metabolite profiles
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Pegorini et al., 2015: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701289/

Rahman et al., 2018: 
https://www.sciencedirect.com/science/article/pii/S2214317317301099

Ghaffari et al., 2019: https://www.journalofdairyscience.org/article/S0022-
0302(19)30838-0/abstract#

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701289/
https://www.sciencedirect.com/science/article/pii/S2214317317301099
https://www.journalofdairyscience.org/article/S0022-0302(19)30838-0/abstract


Performance evaluation protocol

• Split the data into: training, testing (and validation)
• Fixed split approach 

• E.g. 70% training, 30% testing
• Cross-validation approach (k-fold)

• Choose evaluation measures
• Perform measurements over n runs (n>= 1)

Testing
Training

33



Performance evaluation measures
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Confusion Matrix

Use when data is balanced. Use to minimize FP.
Sensitivity or

Use to minimize FN.

The opposite of Recall

𝐹1!"#$% =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Great if it equals 1 and not good if it 
is 0.

+ 100 or more:
- TPR, TDR
- FPR, FDR
- PPV, NPV
- MCC
- …



Classification methods
• Tree-based:

• Random Forest [Breiman
2001], 

• J48 [Quinlan 1993]

• Bayesian: 
• Naïve Bayes [Clark & Niblett, 

1989]

• Boosting: 
• AdaBoost [Freund & Schapire, 

1996]

• Kernel-based: 
• SVM [Ben-Hur et al., 2001]
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• Rule-based: 
• Decision Table [Kohavi

1995]

• Artificial neural networks
• Multi-layer Perceptron 

[Rosenblatt 1961]
• RNN [Rumelhart 1986],

• Deep learning:
• CNN [Fukushima 

1980;LeCun 1998] 

• Etc.



Decision Trees
• A flow chart-like topology (a tree)

• Each internal node represents a test on an attribute

• Each branch represents an outcome of a test

• Leaf nodes represent class labels (if used for classification)

36Decision Tree classifier, Image credit: http://www.packtpub.com



Decision Trees vs. Linear Models

• Choose linear models if the relationship between dependent & 
independent variables is well approximated by a linear model.

• Choose a decision tree model if there is a high non-linearity & complex 
relationship between dependent & independent variables.

• Choose a decision tree model if you need to build a model which is easy 
to explain to people. Decision tree models are even simpler to interpret 
than linear regression!
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Decision Trees vs. Linear Models

Decision Tree classifier, Image 
credit: http://www.packtpub.com

F(s,d,c)=
0 𝑠 < 50000.
0 𝑠 ≥ 50000 𝑎𝑛𝑑 𝑑 > 1
0 𝑠 ≥ 50000 𝑎𝑛𝑑 𝑑 < 1 𝑎𝑛𝑑 𝑐 = 0
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Random Forests

https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png

Bagging / bootstrap 
aggregation

Random sub-
samples of the data

Option: feature 
bagging

- Decorrelate the data
- Reduce the impact of 
strong predictor variables

39
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Artificial Neural Networks (ANN)

• An ANN is a biologically inspired computational model. 

• ANNs attempt to mimic the functionality of the human 
brain.

• An ANN contains:
• Processing elements (neurons)
• Connections (between neurons)
• Training & recall algorithms

• Important feature: network layout

40

https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-
artificial-neural-networks-presentation-46777890
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Artificial Neuron

41

• First model (the perceptron) was developed by Rosenblatt 
in 1957.
• Idea:

input
data

https://www.learnopencv.com/understanding-feedforward-neural-networks/

https://www.learnopencv.com/understanding-feedforward-neural-networks/


The Perceptron

42https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890
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Perceptron Example
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https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890


Perceptron Example
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https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890

Important: It is equivalent with a 
linear separator (hyperplane)!

https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890


Perceptron Example

45
https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890

Important: It is equivalent with a 
linear separator (hyperplane)!

Also important: It can only solve linearly 
separable problems.

OK

NOT OK

https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890


Multilayer Perceptron (MLP)

• Solution: 1980’s – Multilayer perceptrons can solve 
non-linear separable problems

46
https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html

https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html


Multilayer Perceptron (MLP)

• Solution: 1980’s – Multilayer perceptrons can solve 
non-linear separable problems

47
https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html

https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html


Examples of ANNs Topologies
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How do ANNs “Learn”?

• Initialize the weights (w0, w1, …, wk)
• Typically with random values

• Adjust the weights in such a way that the output of 
ANN is consistent with class labels of training examples

• Error function:

• Find the weights wi’s that minimize the above error function
and adjust them proportionally with the error
• e.g., gradient descent, backpropagation algorithm

49
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ANN Supervised Learning

• General principle

50
https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890

Input

Small error

https://www.slideshare.net/purneshaloni5/14-mohsin-dalvi-artificial-neural-networks-presentation-46777890


What Are ANNs Used For?
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When to Use ANN?

• Input is high-dimensional discrete or raw-valued

• Output is discrete or real-valued

• Output is a vector of values

• Possibly noisy data

• The form of the target function is unknown

• Human readability of the result is not important
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Regression
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Regression

• Regression is a technique that is used to 
predict values of a desired target quantity 
when the target quantity is continuous. 
• Note: In classification, the target quantity is 

discrete.

• Multiple methods: linear, higher-order 
(quadratic, polynomial), least-squares, 
Bayesian, non-linear, logistic, ANN, DT, 
Generalized Linear Models (GLMs), …

• Note: Most methods for classification work 
for regression, too, with some 
modifications.
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Performance evaluation protocol

• Split the data into: training, testing (and validation)
• Fixed split approach 

• E.g. 70% training, 30% testing
• Cross-validation approach (k-fold)

• Choose evaluation measures
• Perform measurements over n runs (n>= 1)

Testing
Training
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Performance evaluation
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Confusion Matrix
X

• Correlation coefficients (Pearson, Spearman, Kendall, …)

• Error functions
• Mean absolute error
• Mean absolute log error
• Mean absolute perc. error
• Root mean squared error
• Root mean square log error
• Root mean square perc. error
• Root relative squared error
• Relative absolute error

• …



Regression via multiple methods

57

f(x) = 2x + 3 + ℇ

ℇ = 0 ℇ ∈ [-2 .. +2] ℇ ∈ [-4 .. +4] ℇ ∈ [-8 .. 8] ℇ ∈ [-50 .. 50]

Method ℇ = 0 ℇ ∈ [-2 .. 2] ℇ ∈ [-4 .. 4] ℇ ∈ [-8 .. 8] ℇ ∈ [-50 .. 50]

Linear regression 1.0000
0.0000

0.9998
1.0805

0.9992
2.3775

0.9968
4.6496

0.8803
30.6469

Random Forest 0.9998
1.7155

0.9996
1.9921

0.9986
3.1983

0.9953
5.6982

0.8173
38.2657

ANN - MLP 0.9995
1.7715

0.9993
2.1454

0.9985
3.2222

0.9967
4.6653

0.8740
31.4028

Decision Table 0.9940
6.3388

0.9938
6.4299

0.9926
7.0318

0.9900
8.1663

0.8542
33.7570

Pearson CCs  &  Root Mean Squared Errors (RMSE), n=100



Regression via multiple methods
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f(x) = 2x2 + 3x - 4 + ℇ

ℇ = 0 ℇ ∈ [-2 .. +2] ℇ ∈ [-4 .. +4] ℇ ∈ [-8 .. 8] ℇ ∈ [-50 .. 50]

Method ℇ = 0 ℇ ∈ [-2 .. 2] ℇ ∈ [-4 .. 4] ℇ ∈ [-8 .. 8] ℇ ∈ [-50 .. 50]

Linear regression 0.9673
1520.0160

0.9673
1519.9055

0.9673
1519.8631

0.9673
1520.1075

0.9672
1521.9613

Random Forest 0.9997
190.2147

0.9997
189.5386

0.9997
188.0553

0.9997
188.6072

0.9997
185.6985

ANN - MLP 0.9997
140.1311

0.9997
142.1857

0.9998
132.8442

0.9996
161.0289

0.9998
132.2034

Decision Table 0.9924
737.0877

0.9924
737.2094

0.9924
736.5606

0.9924
737.2194

0.9924
734.9757

Pearson CCs  &  Root Mean Squared Errors (RMSE) ), n=100



Regression via multiple methods
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f(x,y,z,t) = 5x -2cos(y) + 3z2/sqrt(t) + ℇ

Pearson CCs  &  Root Mean Squared Errors (RMSE) ), n=100

Method ℇ = 0 ℇ ∈ [-2 .. 2] ℇ ∈ [-4 .. 4] ℇ ∈ [-8 .. 8] ℇ ∈ [-50 .. 50]

Linear regression 0.9415
29906.8719

0.9415
29906.6893

0.9415
29906.9306

0.9415
29906.2115

0.9415
29902.6757

Random Forest 0.9997
2935.4949

0.9997
2935.3471

0.9997
2934.9531

0.9997
2935.7517

0.9997
2921.3079

ANN - MLP 0.9999
1399.9571

0.9998
1558.516

0.9999
1445.3883

0.9999
1392.7396

0.9999
1374.299

Decision Table 0.9907
12059.6908

0.9907
12059.7739

0.9907
12059.4813

0.9907
12059.8852

0.9907
12062.0892



Clustering

60

LEARNING TYPES



Clustering

• The most common unsupervised learning method

• Used for exploratory data analysis to:
• Find hidden patterns in data
• Find groupings in data

• Plethora of methods: KNN, K-means, hierarchical 
(e.g. neighbour joining), Gaussian mixture models, 
HMMs, self-organizing neural network maps 
(SOMs), …
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K-Nearest Neighbour (KNN)

• For each test data point (that needs to be assigned a class), 
find the k-nearest labeled points in the data

• The test point gets the class label of the majority

62

Test point

Test point becomes 



K-Nearest Neighbour (KNN)

• Advantages:
• Simple and effective
• Works on multi-class classification problems, too
• Only a single parameter to tune (K)

• Disadvantages:
• Accuracy depends on the distance metric
• Sensitive to: the local structure of the data (skewed distributions), outliers, 

missing data

63

K=3   or   K=5?

K=3

K=5



Dimensionality Reduction
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Dimensionality Reduction
• Reduce the number of variables to be considered in future analysis

• Why?
• Quicker and more accurate results from ML methods

• Easier to visualize the data

• Sometimes real relationships in the data are described by only a few dimensions 
(the rest is noise)

• A plethora of methods is available
• Types: local, global and ensemble-like

• Most of them rely on nearest-neighbour relations

• Examples: PCA, manifold learning, ANN, ISOMAP, Diffusion mapping, Maximum 
variance unfolding, Locally Linear Embedding (LLE), Laplacian eigenmaps, 
Hessian LLE, Local Tangent Space Analysis, Ensemble trees, Random Forests, …

65



ML in Livestock
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Developing an ML model from 
Scratch - Process
• Clearly define the problem

• Objective, desired inputs and outputs
• Is ML appropriate (good/best choice) for the problem?

• Gather the data

• Prepare the data
• CLEAN THE DATA (if possible)
• Re-format the data (image, txt, audio, etc. à tabular)
• Deal with missing values, categorical vs. numerical values (encoding, scaling), …
• Feature selection (use meaningful features) à dimensionality reduction (e.g. PCA, …)
• Shuffle data if needed and if it makes sense (not temporal data)
• Data splitting: training, testing, validation

• Choose the evaluation measures
• Dependent on the type of problem (classification, regression, …)
• Note: You can only improve what you can measure!!!

• Choose an evaluation protocol
• fixed split, k-fold cross validation, …

• Think about over- and under-fitting your data and how to avoid it

• Explore models before selecting one or more à Hands-on workshop using Weka
• Ideally with minimum programming effort

• Choose one or more promising models

• Tune the chosen models (hyper-parameter optim.) to optimize performance
• Grid search, random search, etc.

67
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Developing an ML model from 
Scratch – Practical Considerations
• Feature selection

• Future model use vs. “theoretical beauty” 
(publication worthiness)

• Model implementation
• Results variability depending on 

implementations
• Saving a model is sometimes problematic

• Model training, testing & deployment
• Dependency on hardware, OS and 

software

68
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Hands-on/Demo Workshop

• Need to install Weka: https://www.cs.waikato.ac.nz/ml/weka/

• Use ToolsàPackage Manager to install all 
models
• Takes approximately ~15 min and requires a lot of mouse 

clicks
• Note: Do not worry about warning messages. Some external 

packages are not compatible with the latest version of Weka.

• Detailed instructions and materials:
http://animalbiosciences.uoguelph.ca/~dtulpan/conferences/asas2020_mlworkshop/

Or https://tinyurl.com/yyx8p473
69
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• https://www.tutorialandexample.com/machine-learning-tutorial/

• Libraries and software tools
• Weka
• KNIME, 
• Python: scikit-learn, PyTorch, Keras
• JavaScript: TensorFlow
• R: caret
• Apache: Mahout
• RapidMiner
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https://link.springer.com/content/pdf/10.1007%2F978-3-319-63913-0.pdf
https://link.springer.com/content/pdf/10.1007%2F978-1-4614-7138-7.pdf
https://link.springer.com/book/10.1007%2F978-0-387-84858-7
http://infolab.stanford.edu/~ullman/mmds.html
https://towardsdatascience.com/machine-learning-general-process-8f1b510bd8af
https://www.tutorialandexample.com/machine-learning-tutorial/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.knime.com/
https://scikit-learn.org/stable/
https://pytorch.org/
https://keras.io/
https://www.tensorflow.org/
http://topepo.github.io/caret/index.html
https://mahout.apache.org/
https://rapidminer.com/


Thank you
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