Installing Weka

Step1: Download and install the latest stable Weka release from: https://waikato.github.io/weka-wiki/downloading_weka/

Step 2: Install packages via Package Manager

- Start Weka
- Go to Tools \rightarrow Package Manager

Step 3: Select all available packages and click install (takes approx. 10 min)

A brief overview, comparison and practical applications of machine learning models

HANDS-ON WORKSHOP - LIVE

Dan Tulpan, Assistant Professor Centre for Genetic Improvement of Livestock Department of Animal Biosciences Ontario Agricultural College University of Guelph dtulpan@uoguelph.ca

IMPROVE LIFE.

ASAS-NANP Pre-Conference Symposium ASAS-CSAS-WSASAS Virtual Annual Meeting & Trade Show, July 2021 ONTARIO AGRICULTURAL COLLEGE DEPARTMENT OF ANIMAL BIOSGIENCES

Summary

- The Weka Explorer
- Classification problems
- Regression problems
- Data-related artifacts

Classification Problem 1

Data set: classification_iris.csv

- Number of data points: 150
- Number of classes: 3
- Number of attributes: 4
 - SL: Sepal length (cm)
 - SW: Sepal width (cm)
 - PL: Petal length (cm)
 - PW: Petal width (cm)

sepal.length	sepal.width	petal.length	petal.width	variety
5.1	3.5	1.4	0.2	Setosa
4.9	3	1.4	0.2	Setosa
4.7	3.2	1.3	0.2	Setosa
7	3.2	4.7	1.4	Versicolor
6.4	3.2	4.5	1.5	Versicolor
6.9	3.1	4.9	1.5	Versicolor
6.3	3.3	6	2.5	Virginica
5.8	2.7	5.1	1.9	Virginica
7.1	3	5.9	2.1	Virginica

Iris setosa

Iris versicolor Iris v

Iris virginica

Classification Problem 2

Data set: classification random binary.csv

- Number of data points: 100
- Number of classes: 2
- Number of attributes: 5
 - Cow_id
 - MS1
 - MS2
 - MS3
 - MS4

Cow_id	Ms1	Ms2	Ms3	Ms4	Pred_phen
1000	0.82670136	3.57660749	11.1282203	11.9935777	no
1004	0.75360992	7.04655697	10.3097353	9.39415003	no
1008	0.05777438	5.72303611	14.2557181	11.7663005	no
1012	0.23848243	5.35097367	13.0912955	12.5702272	yes
1016	0.16725548	4.16588693	9.76702334	12.1613706	yes
1020	0.69281354	6.45123742	12.519231	9.56385006	yes
1024	0.52219519	5.44130996	9.0774877	11.1876432	no
1028	0.636972	3.2613616	10.4232098	11.7134081	yes
1032	0.25784654	3.3175609	15.3697456	11.9128922	yes

Classification Problem 3

Data set: classification zoo dataset.csv

- Number of data points: 101
- Number of classes: 7
- Number of attributes: 17
 - animal_name
 - Hair
 - Feathers

		•	•••														
animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	legs	tail	domestic	catsize	class_type
aardvark	1	0	0	1	. 0	0	1	1	1	1	0	0	4	0	0) 1	Mammal
antelope	1	0	0	1	. 0	0	0	1	1	1	0	0	4	1	. 0	1	Mammal
bass	0	0	1	0	0	1	1	1	1	0	0	1	0	1	. 0	0 0	Fish
bear	1	0	0	1	. 0	0	1	1	1	1	0	0	4	0	0	1	Mammal
boar	1	0	0	1	. 0	0	1	1	1	1	0	0	4	1	. 0	1	Mammal
buffalo	1	0	0	1	. 0	0	0	1	1	1	0	0	4	1	. 0) 1	Mammal
calf	1	0	0	1	. 0	0	0	1	1	1	0	0	4	1	. 1	. 1	Mammal
carp	0	0	1	0	0	1	0	1	1	0	0	1	0	1	. 1	. 0	Fish
catfish	0	0	1	. 0	0	1	1	1	1	0	0	1	. 0	1	. 0	0 0	Fish
cavy	1	0	0	1	. 0	0	0	1	1	1	0	0	4	0	1	. 0	Mammal
cheetah	1	0	0	1	. 0	0	1	1	1	1	0	0	4	1	. 0) 1	Mammal
chicken	0	1	1	0) 1	0	0	0	1	1	0	0	2	1	. 1	. 0	Bird
chub	0	0	1	0	0	1	1	1	1	0	0	1	0	1	. 0	0	Fish
clam	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0 0	Invertebrate

Data set: regression linear x 0 99 err0.csv

- Number of data points: 100
- Number of attributes: 1
 - X

x		f(x)=2*x+3
	0	3
	1	5
	2	7
	3	9
	4	11
	5	13
	6	15
	7	17
	8	19

Data set: regression_quadratic.csv

- Number of data points: 100
- Number of attributes: 1
 - X

x		f(x)=2*x+3
	0	3
	1	5
	2	7
	3	9
	4	11
	5	13
	6	15
	7	17
	8	19

Data set: regression_complex_func.csv

- Number of data points: 100
- Number of attributes: 4
 - X

• V

• Z

• t

x	У	z	t	$f(x,y,z,t) = 5x-2\cos(y)+3z^2/sqrt(t)$
1	L 1	1	1	6.9194
2	2 2	2	2	27.8029
3	3 3	3	3	63.7454
4	1 4	4	4	117.3073
Ę	5 5	5	5	192.1378
(5 6	6	6	292.6246
7	7 7	7	7	422.4176
8	3 8	8	8	583.349
9	9 9	9	9	775.8223
10	10	10	10	1000.3614
11	L 11	11	11	1258.9259

Data set: regression_random.csv

- Number of data points: 100
- Number of attributes: 5
 - Cow_id

•

Ms1	Cow_id	Ms1	Ms2	Ms3	Ms4	Pred_phen
Ms2	1000	0.9470999	5.95797774	13.915448	12.9347224	0
Ms3	1004	0.61073964	5.51292552	10.6797067	11.6490622	0
	1008	0.79457971	6.14149345	11.5871536	10.3897927	0
10154	1012	0.26283342	6.98005889	9.47012415	11.9177109	1
	1016	0.73682092	5.88477566	9.54904708	12.1499646	1
	1020	0.34022992	6.22943088	10.1080563	9.20260174	0
	1024	0.31375375	7.23901781	11.2240887	11.5455358	0
	1028	0.97597542	5.58866531	11.5971538	10.7777561	0
	1032	0.70038486	6.92601426	10.50353	12.2210478	0
	1036	0.98200496	5.25294086	13.4670354	9.02896927	1

Data-Related Artifacts

- Formatting errors
 - Special symbols
 - Extra columns
 - Duplicate header labels
- Hidden correlations
 - Unnecessary columns directly correlated with the predictor variable

Formatting Errors

data_error1_column_50_special_symbol.csv

47	1180	0.56906494	5.49645174	12.8512741	10.1804572	yes
48	1184	0.04040781	5.54765022	13.3681585	9.2797879	yes
49	1188	0.12406309	5.77318337	10.8367315	11.6485751	yes
50	1192	0.16223907	5.49''	11.3893505	10.9806007	no
51	1196	0.26181768	4.95858857	10.8131897	9.72609505	yes
52	1200	0.01718791	4.48834486	10.3239951	11.9754723	yes
53	1204	0.54080607	5.08725736	9.90381763	12.3617106	no

data_error2_extra_columns.csv

93	1364	0.9791347	4,5439163	9.817484	9,2959242	ves	
94	1368	0.7994233	7.4402879	10.065688	9.135617	yes	maybe good
95	1372	0.8082822	4.9122384	11.339509	9.072897	no	
96	1376	0.5848974	6.9507931	10.75717	11.55033	no	throw away
97	1380	0.6387242	5.8203253	9.4522329	12.018035	yes	
98	1384	0.5163807	5.8681784	10.936714	9.6650375	no	

Formatting Errors

header_error1_single_quote.csv

1	Cow_id	Ms1	Ms2'	Ms3	Ms4	Pred_phen
2	1000	0.54307371	7.09702619	10.2047803	12.1258179	no
3	1004	0.12472931	4.12297535	11.0922358	9.0506221	no
4	1008	0.61846058	5.73718235	11.7349934	9.97657243	no
5	1012	0.6453044	5.0846034	9.76661321	9.6397819	yes
6	1016	0.42973124	6.48659263	11.9666711	10.1245367	yes

header_error2_duplicate_column_labels.csv

1	Cow_id	Ms1	Ms4		Ms3	Ms4		Pred_phen
2	1000	0.26211615	6.9941	L4146	12.0456984	9.5152	21005	no
3	1004	0.27628907	4.8041	L4009	14.1992321	10.811	14346	no
4	1008	0.39226337	4.8811	L3945	14.5932792	9.94	17972	no
5	1012	0.57436216	4.6328	38931	13.1472392	12.162	26214	yes
6	1016	0.97438431	6.6062	21846	10.9354242	11.538	37297	yes
7	1020	0.33248328	3.6843	39992	11.3911645	10.292	29808	yes

Formatting Errors

header_error3_double_quotes.csv

1	"Cow_id"	"Ms1"	"Ms2"	"Ms3"	"Ms4"	"Pred_phen"
2	1000	0.9082203	4.6205842	12.304296	10.26865	no
3	1004	0.4561411	4.1029248	10.416078	9.7241627	no
4	1008	0.6286037	5.283989	13.20705	9.7251261	no
5	1012	0.7591403	3.8496747	12.942408	9.5352086	yes
6	1016	0.7561974	4.2597873	12.683271	12.354336	yes
7	1020	0.7930203	7.0657708	10.398488	9.118181	yes
8	1024	0.7171487	6.9522685	10.689412	12.498773	no
9	1028	0.5653197	6.9458774	9.8353356	12.712097	yes

Correlated features

Lead to over-inflated predictions

overinflated_acc_ded_column_E_is_dependent_on_A.csv

animal_id	gen1	gen2	gen3	pred_gen
12	2.291	2.294	103.375	0
12	2.688	1.425	81.123	0
12	2.71	0.395	68.144	0
12	2.02	2.174	102.877	0
17	2.001	2.684	70.788	7
17	2.941	0.047	82.091	7
17	2.289	1.525	58.188	7
17	2.346	2.439	76.152	7
22	2.199	2.478	97.014	14
22	2.583	2.188	74.66	14
22	2.974	2.178	104.732	14
22	2.41	2.801	73.528	14
27	2.952	0.806	110.689	21
27	2.43	0.411	102.791	21
27	2.382	2.03	77.434	21
27	2.447	0.294	62.878	21
32	2.011	2.977	94.383	28

Last Year's Presentation

• Theoretical aspects of Machine Learning (ML)

A brief overview, comparison and practical applications of machine learning models

Dan Tulpan, Assistant Professor Centre for Genetic Improvement of Livestock Department of Animal Biosciences Ontario Agricultural College University of Guelph <u>dtulpan@uoguelph.ca</u>

ASAS-NANP Pre-Conference Symposium ASAS-CSAS-WSASAS Virtual Annual Meeting & Trade Show, July 19-23, 2020 ONTARIO AGRICULTURAL COLLEGE DEPARTMENT OF ANIMAL BIOSCIENCES

Summary

- Machine Learning general notions
- Types of problems
 - Classification
 - Decision trees
 - Artificial neural networks
 - Regression
 - Clustering
 - K-Nearest Neighbour
 - Dimensionality reduction
- Developing ML models (practical considerations)
- Follow-up Hands-on/Demo Workshop

Learning

"Learning is any process by which a system improves performance from experience."

[Herbert Simon (1916-2001), American economist, political scientist and cognitive psychologist]

• Types of learning

- Supervised (inductive) learning
 - Training data includes desired outputs
 - E.g.: classification problems
- Unsupervised learning
 - Training data does not include desired outputs
 - E.g.: clustering problems
- Semi-supervised learning (hybrid)
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions
 - E.g.: intelligent robots

Machine learning (ML)

• The field of machine learning in concerned with the question of how to construct computer programs that automatically improve with experience.

Tom Mitchell, Machine Learning (1997)

Get computers to program themselves

Context

Artificial Intelligence

Any technique which enables computers to mimic human behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

https://www.kdnuggets.com/2017/07/rapidminer-ai-machine-learning-deeplearning.html

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Applications of ML

How does it work?

- Step 1: The user provides the learning system with examples of the concept to be learned or plain data.
- Step 2: The learning system algorithm infers/builds a characteristic model from these examples.
- Step 3: The model is used to predict quickly and with high accuracy whether or not future novel instances follow the model.

When to use machine learning?

- When there are patterns in the data
- When we can not figure out the functional relationships mathematically
- When we have a lot of (unlabeled) data
 - Labeled training sets are harder to find or generate
 - Data is in high-dimension
 - High dimension "features"
 - Example: sensor data
 - Want to "discover" lower-dimension representations
 - Dimensionality reduction

The Ultimate Goal of ML

 Generalization: the ability of a trained model to fit unseen instances

Training set (labels known)

Test set (labels unknown)

cs.brown.edu/courses/cs143/2013/lectures/17.ppt

Generalization

- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Types of problems solved by ML

https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications

Types of problems solved by ML

LEARNING TYPES

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

DATA TYPES

Classification

LEARNING TYPES

Classification

- Given a set of observations:
 - (*input*_i, *output*_i) pairs, where *output*_i \in { $c_1, c_2, ...$ }
- Find a function *f*, such that: *f*(*input*_{*i*}) = *output*_{*i*}

Classification Problem Examples

- Classify tumors as malign or benign
- Classify protein secondary structures as α-helices, β-sheets, coils or turns
- Classify mushrooms as edible or poisonous

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154116/

http://oregonstate.edu/instruct/bb450/450material/OutlineMaterials/4_5Proteins.html

"Destroying Angel" Edible Puffball Mushrooms Mushrooms https://www.ck12.org/book/Biology-%252528CA-DTI3%2525292/r3/section/14.5/

Classification Problem Examples

- Classify ruminants chewing patterns
- Classify cattle behaviour based on ear tag, collar and halter sensors
- Classify cattle BCS based on metabolite profiles

Pegorini et al., 2015: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701289/

Rahman et al., 2018: https://www.sciencedirect.com/science/article/pii/S2214317317301099

Ghaffari et al., 2019: https://www.journalofdairyscience.org/article/S0022-0302(19)30838-0/abstract#

Performance evaluation protocol

- Split the data into: training, testing (and validation)
 - Fixed split approach
 - E.g. 70% training, 30% testing
 - Cross-validation approach (k-fold)

- Choose evaluation measures
- Perform measurements over n runs (n>= 1)

Performance evaluation measures

Classification methods

- Tree-based:
 - Random Forest [Breiman 2001],
 - **J48** [Quinlan 1993]
- Bayesian:
 - Naïve Bayes [Clark & Niblett, 1989]
- Boosting:
 - AdaBoost [Freund & Schapire, 1996]
- Kernel-based:
 - **SVM** [Ben-Hur et al., 2001]

- Rule-based:
 - Decision Table [Kohavi 1995]
- Artificial neural networks
 - Multi-layer Perceptron [Rosenblatt 1961]
 - RNN [Rumelhart 1986],
- Deep learning:
 - CNN [Fukushima 1980;LeCun 1998]
- Etc.

Decision Trees

- A flow chart-like topology (a tree)
- Each internal node represents a test on an attribute
- Each branch represents an outcome of a test
- Leaf nodes represent class labels (if used for classification)

Decision Tree classifier, Image credit: http://www.packtpub.com

Decision Trees vs. Linear Models

- **Choose linear models if** the relationship between dependent & independent variables is well approximated by a linear model.
- Choose a decision tree model if there is a high non-linearity & complex relationship between dependent & independent variables.
- Choose a decision tree model if you need to build a model which is easy to explain to people. Decision tree models are even simpler to interpret than linear regression!

Decision Trees vs. Linear Models

Decision Tree classifier, Image credit: http://www.packtpub.com

Random Forests

Bagging / bootstrap aggregation Random subsamples of the data

Option: feature bagging

Decorrelate the dataReduce the impact of strong predictor variables

https://commons.wikimedia.org/wiki/File:Random forest diagram complete.png

Artificial Neural Networks (ANN)

- An ANN is a biologically inspired computational model.
- ANNs attempt to mimic the functionality of the human brain.
- An ANN contains:
 - Processing elements (neurons)
 - Connections (between neurons)
 - Training & recall algorithms
- Important feature: network layout

https://www.slideshare.net/purneshaloni5/14-mohsin-dalviartificial-neural-networks-presentation-46777890

Artificial Neuron

• First model (**the perceptron**) was developed by Rosenblatt in 1957.

An example of a neuron showing the input ($x_1 - x_n$), their corresponding weights ($w_1 - w_n$), a bias (b) and the activation function f applied to the weighted sum of the inputs.

https://www.learnopencv.com/understanding-feedforward-neural-networks/

The Perceptron

- Input signals:
 - Continuous or discrete values fed from previous neurons
 - Each input associated with a Weight

Integration Function:

- Usually a weighted summation function
- Threshold/Bias regulates result of Integration Function
- Output is called *neuron net input*

Activation/Transfer Function:

- Usually a non linear function
- Output interval [0,1] or [-1,1]
- Output values continuous or discrete

Perceptron Example

Perceptron Example

Perceptron Example

Multilayer Perceptron (MLP)

 Solution: 1980's – Multilayer perceptrons can solve non-linear separable problems

Multilayer Perceptron (MLP)

 Solution: 1980's – Multilayer perceptrons can solve non-linear separable problems

Examples of ANNs Topologies

Single Layer Feedforward Network

Multi-Layer Feedforward Network

How do ANNs "Learn"?

- Initialize the weights (w₀, w₁, ..., w_k)
 - Typically with random values
- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples

• Error function:
$$E = \sum_{i} \left[Y_i - f(w_i, X_i) \right]^2$$

- Find the weights w_i's that minimize the above error function and adjust them proportionally with the error
 - e.g., gradient descent, backpropagation algorithm

ANN Supervised Learning

What Are ANNs Used For?

- Classification: Assigning each object to a known specific class
- Clustering: Grouping together objects similar to each other
- Pattern Association: Presenting of an input sample triggers the generation of specific output pattern
- Function approximation: Constructing a function generating almost the same outputs from input data as the modeled process
- Optimization: Optimizing function values subject to constraints
- Forecasting: Predicting future events on the basis of past history
- Control: Determining values for input variables to achieve desired values for output variables

When to Use ANN?

- Input is high-dimensional discrete or raw-valued
- Output is discrete or real-valued
- Output is a vector of values
- Possibly noisy data
- The form of the target function is unknown
- Human readability of the result is not important

Regression

DATA TYPES

LEARNING TYPES

Regression

- **Regression** is a technique that is used to predict values of a desired target quantity when the target quantity is **continuous**.
 - Note: In classification, the target quantity is discrete.
- Multiple methods: linear, higher-order (quadratic, polynomial), least-squares, Bayesian, non-linear, logistic, ANN, DT, Generalized Linear Models (GLMs), ...
- Note: Most methods for classification work ---for regression, too, with some modifications.

Performance evaluation protocol

- Split the data into: training, testing (and validation)
 - Fixed split approach
 - E.g. 70% training, 30% testing
 - Cross-validation approach (k-fold)

- Choose evaluation measures
- Perform measurements over n runs (n>= 1)

Performance evaluation

- Correlation coefficients (Pearson, Spearman, Kendall, ...)
- Error functions

. . .

- Mean absolute error
- Mean absolute log error
- Mean absolute perc. error
- Root mean squared error
- Root mean square log error
- Root mean square perc. error
- Root relative squared error
- Relative absolute error

Regression via multiple methods

f(x) = 2x + 3 + E

Method	0 = 3	ε∈[-22]	ε ∈ [-4 4]	€ ∈ [-88]	ε ∈ [-50 50]
Linear regression	1.0000	0.9998	0.9992	0.9968	0.8803
	0.0000	1.0805	2.3775	4.6496	30.6469
Random Forest	0.9998	0.9996	0.9986	0.9953	0.8173
	1.7155	1.9921	3.1983	5.6982	38.2657
ANN - MLP	0.9995	0.9993	0.9985	0.9967	0.8740
	1.7715	2.1454	3.2222	4.6653	31.4028
Decision Table	0.9940	0.9938	0.9926	0.9900	0.8542
	6.3388	6.4299	7.0318	8.1663	33.7570

Pearson CCs & Root Mean Squared Errors (RMSE), n=100

Regression via multiple methods

 $f(x) = 2x^2 + 3x - 4 + \varepsilon$

Method	6 = 3	ε∈[-22]	ε ∈ [-4 4]	€ ∈ [-88]	ε ∈ [-50 50]
Linear regression	0.9673	0.9673	0.9673	0.9673	0.9672
	1520.0160	1519.9055	1519.8631	1520.1075	1521.9613
Random Forest	0.9997	0.9997	0.9997	0.9997	0.9997
	190.2147	189.5386	188.0553	188.6072	185.6985
ANN - MLP	0.9997	0.9997	0.9998	0.9996	0.9998
	140.1311	142.1857	132.8442	161.0289	132.2034
Decision Table	0.9924	0.9924	0.9924	0.9924	0.9924
	737.0877	737.2094	736.5606	737.2194	734.9757

Pearson CCs & Root Mean Squared Errors (RMSE)), n=100

Regression via multiple methods

 $f(x,y,z,t) = 5x - 2\cos(y) + 3z^2/sqrt(t) + \varepsilon$

Method	0 = 3	ε∈[-22]	ε ∈[-44]	8 ∈ [-88]	ε ∈ [-50 50]
Linear regression	0.9415	0.9415	0.9415	0.9415	0.9415
	29906.8719	29906.6893	29906.9306	29906.2115	29902.6757
Random Forest	0.9997	0.9997	0.9997	0.9997	0.9997
	2935.4949	2935.3471	2934.9531	2935.7517	2921.3079
ANN - MLP	0.9999	0.9998	0.9999	0.9999	0.9999
	1399.9571	1558.516	1445.3883	1392.7396	1374.299
Decision Table	0.9907	0.9907	0.9907	0.9907	0.9907
	12059.6908	12059.7739	12059.4813	12059.8852	12062.0892

Pearson CCs & Root Mean Squared Errors (RMSE)), n=100

Clustering

DATA TYPES

LEARNING TYPES

Clustering

- The most common **unsupervised learning** method
- Used for exploratory data analysis to:
 - Find hidden patterns in data
 - Find groupings in data
- Plethora of methods: KNN, K-means, hierarchical (e.g. neighbour joining), Gaussian mixture models, HMMs, self-organizing neural network maps (SOMs), ...

K-Nearest Neighbour (KNN)

- For each test data point (that needs to be assigned a class), find the k-nearest labeled points in the data
- The test point gets the class label of the majority

K-Nearest Neighbour (KNN)

• Advantages:

- Simple and effective
- Works on multi-class classification problems, too
- Only a single parameter to tune (K)

• Disadvantages:

- Accuracy depends on the distance metric
- Sensitive to: the local structure of the data (skewed distributions), outliers, missing data

Dimensionality Reduction

DATA TYPES

LEARNING TYPES

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

64

Dimensionality Reduction

- Reduce the number of variables to be considered in future analysis
- Why?
 - Quicker and more accurate results from ML methods
 - Easier to visualize the data
 - Sometimes real relationships in the data are described by only a few dimensions (the rest is noise)
- A plethora of methods is available
 - Types: local, global and ensemble-like
 - Most of them rely on nearest-neighbour relations
 - Examples: PCA, manifold learning, ANN, ISOMAP, Diffusion mapping, Maximum variance unfolding, Locally Linear Embedding (LLE), Laplacian eigenmaps, Hessian LLE, Local Tangent Space Analysis, Ensemble trees, Random Forests, ...

ML in Livestock

	Contents lists available at ScienceDirect	BEHAVIOUR		
	Animal Behaviour			
ELSEVIER	journal homepage: www.elsevier.com/locate/anbehav			
Review				
Application	CrossMark			
John Joseph Valletta ^{a, *} , Colin Torney ^a , Michael Kings ^b , Alex Thornton ^b , Joah Madden ^c				
 ^a Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, U.K. ^b Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, U.K. ^c Centre for Research in Animal Behaviour, University of Exeter, Exeter, U.K. 				

k.liakos@certh.gr (K.G.L.); dmoshou@auth.gr (D.M.)

Developing an ML model from Scratch - Process

- Clearly define the problem
 - Objective, desired inputs and outputs
 - Is ML appropriate (good/best choice) for the problem?
- Gather the data
- Prepare the data
 - CLEAN THE DATA (if possible)
 - Re-format the data (image, txt, audio, etc. \rightarrow tabular)
 - Deal with missing values, categorical vs. numerical values (encoding, scaling), ...
 - Feature selection (use meaningful features) \rightarrow dimensionality reduction (e.g. PCA, ...)
 - Shuffle data if needed and if it makes sense (not temporal data)
 - Data splitting: training, testing, validation
- Choose the evaluation measures
 - Dependent on the type of problem (classification, regression, ...)
 - Note: You can only improve what you can measure!!!
- Choose an evaluation protocol
 - fixed split, k-fold cross validation, ...
- · Think about over- and under-fitting your data and how to avoid it
- Explore models before selecting one or more → Hands-on workshop using <u>Weka</u>
 - Ideally with minimum programming effort
- Choose one or more promising models
- Tune the chosen models (hyper-parameter optim.) to optimize performance
 - Grid search, random search, etc.

Developing an ML model from Scratch – Practical Considerations

Feature selection

• Future model use vs. "theoretical beauty" (publication worthiness)

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Model implementation

- Results variability depending on implementations
- Saving a model is sometimes problematic

- Model training, testing & deployment
 - Dependency on hardware, OS and software

This Photo by Unknown Author is licensed under CC BY-SA

Hands-on/Demo Workshop

- Need to install Weka: https://www.cs.waikato.ac.nz/ml/weka/
- Use Tools→Package Manager to install all models
 - Takes approximately ~15 min and requires a lot of mouse clicks
 - Note: Do not worry about warning messages. Some external packages are not compatible with the latest version of Weka.
- Detailed instructions and materials:

http://animalbiosciences.uoguelph.ca/~dtulpan/conferences/asas2020_mlworkshop/ Or https://tinyurl.com/yyx8p473

References

- Theoretical ML
 - Books (Free):
 - Kubat (2017): <u>An Introduction to Machine Learning</u>
 - James et al. (2017): An Introduction to Statistical Learning
 - Hastie et al. (2017): <u>The Elements of Statistical Learning</u>
 - Leskovec et al. (2017): Mining of Massive Datasets
 - Books (Not Free)
 - Murphy (2012): Machine Learning: a Probabilistic Perspective
 - Marsland (2009): Machine Learning: an Algorithmic Perspective
- Practical ML
 - <u>https://towardsdatascience.com/machine-learning-general-process-8f1b510bd8af</u>
- Online tutorials
 - <u>https://www.tutorialandexample.com/machine-learning-tutorial/</u>
- Libraries and software tools
 - <u>Weka</u>
 - <u>KNIME</u>,
 - Python: scikit-learn, PyTorch, Keras
 - JavaScript: <u>TensorFlow</u>
 - R: <u>caret</u>
 - Apache: Mahout
 - <u>RapidMiner</u>

Thank you

Food from Thought

ONTARIO Agricultural College

DEPARTMENT OF ANIMAL BIOSCIENCES

UNIVERSITY &GUELPH

Centre for Genetic Improvement of Livestock

AMERICAN SOCIETY OF ANIMAL SCIENCE

AVENDAN SOCIETY OF ANIMAL SOLENCE

Canadian Dairy Network

