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1 Introduction

A brief history of developments in using SNPs to estimate breeding values of animals will be
the preface for this proposal.

1.1 Using SNP Haplotypes

MEUWISSEN, HAYES, and GODDARD (2001) proposed methods of predicting total genetic
value using a genome-wide dense marker map from a limited number of phenotypic records using
marker haplotypes. Simultaneous estimation of the effects of marker haplotypes was conducted,
and then the sum of those effects over the entire genome yields the genomic EBV of the animal.
The problems with this approach are that the sequence of markers needs to be known, and
secondly, the inheritance of marker haplotypes from the sire needs to be determined. Positions
of markers are not known exactly in all cases. Determination of the haplotype is also not clear
in all situations depending on the genotypes of the sire and dam, which may or may not be
available.

1.2 Using SNP Genotypes

To overcome the problems with haplotypes, SNP genotypes were used directly, and the simulta-
neous estimation of the effects of many thousands of SNPs from less than a thousand genotyped
animals was applied. The locations of the SNPs did not matter, except that they be distributed
evenly across the genome and that they be within 1 centiMorgan of QTLs. The inheritance from
parent to progeny did not need to be known. The problem was that there were many thousands
of unknowns to estimate from data on relatively few animals, i.e. overparameterization of the
model. The methodology of estimation was also being refined from least square methods to
several Bayesian methods.

1.3 Better Relationships

Stranden and Garrick(2009) and VanRaden(2008) showed that the thousands of SNPs could be
used to derive a better, enhanced additive genetic relationship matrix among the animals that
were genotyped. Let A++ be the improved relationship matrix. The SNPs indicated that some
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animals were more related to each other than the values in the A matrix would normally predict,
and others were less related (i.e. fewer SNP genotypes in common). The resulting genomic EBV
(GEBV) would be more accurate than EBV based only on data (DEBV). While the inverse of A
is easily calculated and used to obtain DEBV, the inverse of A++ is not possible to calculate for
large numbers of animals. Methods have been proposed that do not require the inverse of A++,
but this matrix is very dense compared to the inverse of A. This means that most elements
(99%) in the matrix are not equal to zero. In comparison A−1 has only about 5% non-zero
elements. Therefore, any multiplications using A++ will take a long time to calculate, if they
can be computed at all.

1.4 Three Pronged Approach

The First Prong is the calculation of DEBV in the usual manner, ignoring all SNP information.
The Second Prong is the calculation of GEBV on genotyped animals only. The Third Prong is
the merger of DEBV and GEBV into a combined EBV (CEBV). This is simple and quick. The
Third Prong can be achieved in a number of different ways. An alternative is to leave DEBV
and GEBV as separate entities and to present both to the public. A second alternative is to
only show the CEBV. Lastly, all three figures could be presented. If all animals were genotyped,
then GEBV would be the only numbers needed.

2 Proposal

2.1 Are All SNPs Needed?

Hayes and Goddard (2001) showed that there are many genes of small effect (pigs and dairy
cattle), and few genes with large effects. Also, the few genes of large effects account for the
majority of genetic variation in a trait. Their figure showed that 50 genes accounted for 99% of
the variation in dairy cattle, and about 95% in pigs. The question is whether all 50,000 SNPs
are needed to get accurate GEBV. This proposal is based on the premise that only a small
number of SNPs (say 200, or maybe up to 2000) are needed. A problem is that each trait to be
evaluated will require a different set of 200 SNPs. Picking the best 200 SNPs for a trait will not
take very much time. Because multiple trait systems are used for production and fertility traits,
having different SNPs for each trait could complicate the programs for genetic evaluation, but
this is not impossible to overcome.

Currently, there are 3000 or so bulls genotyped for 50K SNPs. Using these bulls and their
EBVs, analyses would be run to determine the best 200 SNPs. At the same time there will be
estimates of the regressions on these 200 SNP genotypes. These estimates can be used as prior
information into the later analyses, much as in the MTP system for predicting lactation yields
in dairy cattle milk recording.
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2.2 Simulation Study

A population of 10,000 individuals was generated. For each individual 5,000 independent SNPs
were simulated. The effects of each gene were simulated from a Poisson distribution, such that
the heritability of the overall trait was 0.25. Five generations of random selection and matings
were conducted to give the 10,000 individuals. All animals of both sexes were observed for the
same trait. The animal genetic merit was the sum of the genotypic effects of all 5,000 loci.
Observations were created by adding a random residual effect to each animal’s genetic merit.

The data were analyzed by a simple animal model with an overall mean as the only fixed
factor. The A matrix was used in the analysis. The residual variance was estimated from this
model.

Data were analyzed by a second model in which the regression on a single loci genotype was
included along with the animal additive genetic effect. All 5,000 loci were put in the model, one
at a time, and the locus giving the smallest residual variance was determined. The other loci
were ordered by the residual variance given by each (lowest to highest).

The model was augmented by keeping the best locus from the previous runs, and adding a
second locus to the model. All 4,999 remaining loci were added to the model, one at a time,
until the locus giving the smallest residual variance was found.

This process was repeated until 70 loci had been added to the model. The decreases in
residual variance are presented in Table 1.

Table 1.
Residual Variance After Addition of Another Locus To Model.

No. Loci Residual Var. No. Loci Residual Var.
0 763.22 15 726.12
1 758.14 20 716.25
2 755.55 25 707.38
3 753.02 30 698.71
4 750.63 35 690.79
5 748.12 40 683.36
6 745.69 45 675.61
7 743.22 50 668.72
8 741.09 55 661.90
9 738.96 60 655.45

10 736.87 70 643.33

With 20 loci added to the model, the reduction in residual variance was 6.15%, and with 70
loci, the reduction was 15.71%. The decreases in residual variance are becoming smaller, but
should continue up to 200 loci. This is the way that the SNPs are proposed to be chosen for
inclusion into the model. A better, faster search strategy is needed to find the minimal set of
SNPs.

The total genetic merit of an animal would be the sum of the animal additive polygenic
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solution plus the regressions on the animal’s genotypes for the selected loci in the model. An
example will follow.

2.3 Polygenic SNP Model

The proposed system will require many females to be genotyped, and nearly all males. Assume
a single trait observed on over a million females. Initially there would be only a few hundred
females genotyped, but this should be increased to 10,000 or more over time. The 200 SNPs
that influence the trait are assumed to have been determined from analyses of bull proofs and
bull genotypes using a model similar to that which will be described here.

Let y be the observations on individual cows. The animal additive genetic effects, ai, will be
partitioned into two parts,

ai = pi +
m∑

k=1

ckgki,

where pi is a “polygenic” portion of the genetic merit of animal i, gki is the genotype (1, 2, or
3) for the kth SNP of animal i, and ck are the regression coefficients to be estimated, which are
constant over all animals in the population. The number of SNPs included was m, assumed to
be 200 or fewer loci. The covariance matrix of pi is assumed to be Aσ2

p. Also, the regressions
are taken to be random (as in the Bayes methods) with covariance matrix equal to Iσ2

c . In
practice, this variance would need to be estimated, or a separate variance could be estimated for
each SNP locus in the model, as in the Bayes B methods. The polygenic and SNP genetic parts
are assumed to be independent of each other, and σ2

p reflects the remaining polygenic variance
after accounting for the 200 SNP genotypes. The A matrix is assumed to be the approximately
appropriate correct covariance matrix for the remaining genetic effects. The model equation is

yi = µ+
m∑

k=1

(ckgki) + pi + ei.

2.4 Numerical Example

Assume just 4 SNPs for this example data. The animals and their genotypes are given in Table
2.
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Table 2.
Example Data for Proposal.

Animal Sire Dam Genotypes Obs.
1 1 2 3 2
2 2 2 1 3
3 3 1 2 1
4
5 3 2 1 3
6 1 5 2 1 2 2 135
7 1 4 1 3 3 1 91
8 2 4 1 2 2 2 28
9 2 6 3 2 1 3 153
10 3 5 90
11 3 6 74
12 3 7 2 2 3 1 100
13 1 8 71
14 2 6 2 1 2 2 147
15 3 9 3 1 1 2 98

Note that some animals do not have genotypes, and some animals do not have observations,
or both. For animals with genotypes the residual variance for those records will be 0.85(σ2

e),
and for animals without genotypes the residual variance for their records will be σ2

e , assuming
that the four genotypes account for 15% of a reduction in residual variance over a simple animal
model.

The first step is to predict the missing SNP genotypes for animals not actually genotyped.
Animals 10, 11, and 13 can be easily predicted because the genotypes of both parents are known.
For animal 10, for example, the genotypes should be 3, 1.5, 1.5, and 2, respectively, or an average
of the genotype values of the parents. Animals 11 and 13 are determined in the same manner
giving 2.5, 1, 2, 1.5 for animal 11, and 1, 2, 2.5, and 2 for animal 13. The genotype of animal 4
must be deduced from its progeny, animals 7 and 8. Looking at animals 4, 7, and 1, then animal
4 contributed alleles 1, 2, 2, and unknown to the genotype of progeny 7. For progeny 8, animal
4 contributed alleles 1, unknown, 2, and 1. The most likely genotypes for animal 4 are then 1, 2,
2, and 2. If there is an animal with unknown genotypes, and without parents or progeny having
genotypes, then the average genotype values of animals that have been genotyped, can be used,
which are 2.03, 1.70, 1.93, and 1.97, respectively.

2.4.1 Setting Up Mixed Model Equations

Only the genotypes (actual and predicted) of the animals with records go into the data analysis.
In dairy cattle, this will be the cows or females of the population. Thus, genotypes on cows will
be crucial for this proposal to work well in the long run.

The X matrix for the overall mean in the model is a column vector of 10 ones. The Z matrix
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is divided into two components, one for the regressions on SNP genotypes, i.e.

Z1 =



2 1 2 2
1 3 3 1
1 2 2 2
3 2 1 3
3 1.5 1.5 2

2.5 1 2 1.5
2 2 3 1
1 2 2.5 2
2 1 2 2
3 1 1 2


,

and the other part for the animal polygenic effects, Z2 matrix is (010x5 I10x10), and the residual
covariance matrix is diagonal,

R = diag
(
.85 .85 .85 .85 1 1 .85 1 .85 .85

)
.

The relationship matrix inverse is

A−1 =
1
2



5 0 0 1 1 −2 −2 1 0 0 0 0 −2 0 0
0 5 0 1 0 2 0 −2 −2 0 0 0 0 −2 0
0 0 6 0 1 1 1 0 1 −2 −2 −2 0 0 −2
1 1 0 4 0 0 −2 −2 0 0 0 0 0 0 0
1 0 1 0 4 −2 0 0 0 −2 0 0 0 0 0

−2 2 1 0 −2 7 0 0 −2 0 −2 0 0 −2 0
−2 0 1 −2 0 0 5 0 0 0 0 −2 0 0 0

1 −2 0 −2 0 0 0 5 0 0 0 0 −2 0 0
0 −2 1 0 0 −2 0 0 5 0 0 0 0 0 −2
0 0 −2 0 −2 0 0 0 0 4 0 0 0 0 0
0 0 −2 0 0 −2 0 0 0 0 4 0 0 0 0
0 0 −2 0 0 0 −2 0 0 0 0 4 0 0 0

−2 0 0 0 0 0 0 −2 0 0 0 0 4 0 0
0 −2 0 0 0 −2 0 0 0 0 0 0 0 4 0
0 0 −2 0 0 0 0 0 −2 0 0 0 0 0 4



.

The mixed model equations are

 X′R−1X X′R−1Z1 X′R−1Z2

Z′1R
−1X Z′1R

−1Z1 + I(50) Z′1R
−1Z2

Z′2R
−1X Z′2R

−1Z1 Z′2R
−1Z2 + A−1α


 µ̂

ĉ
p̂

 =

 X′R−1y
Z′1R

−1y
Z′2R

−1y

 ,
where α = 3 for this example.

2.4.2 Solutions and GEBV

Solutions for two models will be compared. The first model is a simple animal model with only
a mean and additive genetic effect in the model. The residual variances were assumed the same
for all observations. Genotype information was not included. The second model is the proposed
model. The solutions, in table form, were
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Effect Simple Animal Proposed Genomic Combined
Model Model Part EBV

µ 96.34 93.61
c1 1.85 1.46
c2 -0.60 -0.99
c3 -0.66 -1.05
c4 0.97 0.58
a1 5.43 6.77 -2.50 4.26
a2 2.24 1.99 1.62 3.61
a3 -4.52 -5.40 1.87 -3.53
a4 -10.42 -10.77 -1.46 -12.22
a5 7.27 7.41 3.08 10.49
a6 14.72 15.90 0.99 16.94
a7 -2.46 -1.38 -4.07 -5.45
a8 -14.54 -15.77 -1.46 -17.23
a9 15.14 15.68 3.08 18.76
a10 0.27 -0.46 2.47 2.02
a11 1.18 1.13 1.43 2.55
a12 -2.47 -2.03 -1.62 -3.67
a13 -7.52 -7.23 -1.98 -9.21
a14 14.51 15.64 0.99 16.63
a15 4.79 3.99 3.49 7.49

The regression coefficient estimates were made to sum to 0 by subtracting the simple mean of
all regression coefficient estimates. These are shown under “Genomic Part” in the table above.
The genetic contribution of the SNP genotypes for each animal is shown under “Genomic Part”
for the animals. The contribution is the animal’s genotype times the corresponding adjusted
regression coefficients. For animal 1 for example,

part1 = 1.46(1)− 0.99(2)− 1.05(3) + 0.58(2)
= −2.50.

Because genotypes were deduced for all animals that were not genotyped, the SNP genetic
contribution could be calculated for all animals. The accuracy of those contributions needs
to be determined, given that a genotype may be a most probable genotype rather than an
actual genotype. Genomic EBV are the sum of the polygenic portion and the “Genomic Part”.
Together they are labelled as “Combined EBV” in the table above, i.e. the last column. The
combined or CEBV are better for ranking animals. The solutions from the simple animal model
were used to predict y, then ê = (ŷ − y) was calculated and the sum of squares of residuals,
(SSR), was computed. The same was computed for the proposed model. SSR(Animal model) =
116,083, and SSR(Proposed model) = 6,665. The proposed model fit the data better, but there
were only 10 observations.
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2.4.3 Young Animals

In practice, a young calf (animal 16) will be genotyped when it is born and a CEBV will be
requested. Suppose the young calf was a progeny of animals 12 and 15 (from the example), and
that the calf’s genotypes were 3, 1, 2, and 2, respectively. The parent average of the polygenic
part is 0.5(−2.03 + 3.99) = 0.98, and the “Genomic Part” is

part16 = 1.46(3)− 0.99(1)− 1.05(2) + 0.58(2)
= 2.45,

then the combined EBV would be 3.43.

2.4.4 Reliabilities

Let Cc represent the inverse elements of the mixed model coefficient matrix corresponding to
the regressions on SNP genotypes. In the example this would be of order 4. Let f be the vector
of values of the genotypes for an animal. For example, for animal 1, f = (1 2 3 2), and for
animal 10 would be f = (3 1.5 1.5 2). For this example,

Cc =


.01841621 .00059527 .00098123 −.00046843
.00059527 .01881381 −.00049214 .00018887
.00098123 −.00049214 .01879366 .00081384

−.00046843 .00018887 −.00081384 .01912397

 ,
then the variance of prediction error of the “Genomic Part” would be

Cgp = fCcf ′σ̂2
e

= .3510765σ̂2
e

for animal 1, and would be .3392277σ̂2
e for animal 10.

The off-diagonals between the genomic part and the polygenic parts will be very small and
close to zero, if there are enough data. Thus, the two pieces could be considered to be nearly
independent. This will need to be checked with a large data set before proceeding under the
assumption of independence.

The variance of prediction error of the polygenic part comes from the diagonals of the inverse
of the mixed model equations. For animals 1 and 10 the diagonal elements of the inverse were
.3041048 and .2723333, respectively. Hence, the variance of prediction error of the combined
EBV would be .6551813σ̂2

e for animal 1, and .611561σ̂2
e for animal 10.

To convert from variance of prediction error (V PE), the total genetic variance (V G) is
needed. In the proposed model the total genetic variance is

V G =
σ2

e

50
+

σ2
e

αAii
,
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where the first term represents the genetic variance of the “Genomic Part”, the second term is
the remaining polygenic variation, and Aii is the diagonal of the A matrix for an animal (i.e. 1
plus the inbreeding coefficient). To convert to a reliability (REL) then calculate

REL = (V G− V PE)/V G

and multiply by 100. One could also do Gibbs sampling on the mixed model equations keeping
the variances constant. About 100 samples would be needed. The variance of the sample values
of the combined EBV would give V PE for each animal, and this will include the off-diagonals
between genomic and polygenic parts.

3 Conclusions

The proposed model has some advantages and disadvantages. The advantages are

• Up to 200 SNPs out of 50,000 are utilized per trait, computations are reduced. If necessary,
more SNPs could be used but would likely not be necessary.

• The model includes a polygenic part and a genomic part and these are estimated simulta-
neously.

• A complicated genetic relationship matrix is avoided as well as its inverse.

• Not all animals need to be genotyped, but genotypes need to be deduced from parents and
progeny if an animal is not genotyped.

• Predictions for new animals can be derived easily.

• Reliabilities can be obtained readily by different approaches.

The disadvantages are

• Every trait will need a different set of SNPs.

• To work well in the long run, many more females will need to be genotyped, at least in
dairy cattle.

• A large number of SNPs are not utilized at all, but at the same time their contribution is
expected to be very small.

A chip panel could be made to only have those SNPs that contribute to each trait. If there
are 100 traits, then if each trait has a different set of 200 SNPs, then a 20,000 SNP panel might
be needed. However, some SNPs may overlap between traits. By having fewer SNPs on a panel,
perhaps producers would be better able to afford to genotype their cows. If the cost is the same
as the 50K chip, then only the 50K chip needs to be used.
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There have been no comparisons to other proposed methods. Which method is more accurate
is not known. The proposed model will give more accurate combined EBVs compared to the
usual animal models, as evidenced by the smaller residual variance of the new model. The
proposed method is simple and requires only minor modification of existing software to include
another random factor in the model for each trait. Computing time will not be increased greatly
over existing systems, but revisions to software may need time to implement this proposal.

This proposal was similar to comments made by Ben Hayes and Mike Goddard at the recent
Interbull Meeting in Uppsala. There is little time to research this proposal thoroughly, however,
before “something” has to be in place for CDN this fall. This comes from trying to out-race the
competition, but the comment was that Canadian producers want to make sure the method was
correct first. They did not indicate which method was correct or better, nor has anyone else.
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