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Introduction

Current methods of estimating covariance matrices (REML and Bayesian methods)
for multiple trait methods, provide estimated matrices that are always positive definite
(pd), if the starting matrices are pd. Starting matrices are often derived from the lit-
erature, from different sources of information and may not necessarily be pd (i.e. all
eigenvalues are positive). An easy approach is to use a diagonal starting matrix, in which
all diagonals are positive. Alternatively, one may use a phenotypic covariance matrix
reduced by some constant, or a procedure where off-diagonals are gradually reduced until
the matrix is pd. Whichever approach is used, the starting matrix needs to be checked
to ensure that it is pd.

Hayes and Hill (1981) presented the “bending” procedure to modify the eigenvalues
of non-pd matrices, and Jorjani et al.(2003) gave a weighted bending procedure. Finally,
Meyer and Kirkpatrick (2010) presented bending using a penalized maximum likelihood
method. There have been many other techniques applied to the same problem. In these
procedures all of the eigenvalues are modified, both positive and negative eigenvalues.
Consequently, the newly re-formed matrix could be quite different from the original ma-
trix. The method in this paper only modifies the negative eigenvalues, and does not have
any optimal properties other than the new matrix is pd.

The pd matrix is then utilized in one of the computational versions of REML, and at
convergence the resulting estimated matrix should be pd. The first question is what are
the standard errors of the correlation estimates from the matrix. Some REML software
provides large sample variances of covariance estimates. A sampling method using an
inverted Wishart distribution for the matrix of estimated variances and covariances is
described to obtain a very rough approximation for standard errors of estimated correla-
tions.

Program codes in the R language are given, but remember that, in R, a task may be
solved in many different ways with all solutions giving the same results. Thus, the code
given is for descriptive purposes, and not necessarily for computational efficiency. Also,
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the code does not check for any error conditions that could be encountered, and assumes
the user knows how the functions work.

PD Function

There are many ways to change the negative eigenvalues of a matrix to be positive.
The concept in this method is that the negative eigenvalues should be very small positive
values in decreasing order.

First, sum the negative eigenvalues to give S, square the total, multiply by 100, add
one to it, and call this quantity W. Let P be the smallest absolute value of the eigenvalues.
If the negative eigenvalues, E[i] are numbered i = 1 to m where E[1] is the smallest
negative value, and E[m] is the largest negative value, and m is the number of negative
eigenvalues. The ith negative eigenvalue is made positive by the formula,

NEWvalue[i] = P * ( (S-E[i])*(S-E[i]) / W )

To illustrate, let E[1] = -.09, E[2]=-.46, and E[3]=-3.50, then

P = .09,

S = -4.05, and

W = 1641.25. # equals 100(4.05 squared) plus 1

The new eigenvalues would be calculated as follows:

E[1] = P * ( (-4.05+.09) *(-3.96) )/ 1641.25 = .00085992

E[2] = P * ( (-4.05+.46) *(-3.59) )/ 1641.25 = .00070674

E[3] = P * ( (-4.05+3.50)*(-0.55) )/ 1641.25 = .00001659

Re-create the matrix using the new eigenvalues and the original eigenvectors.

An R function to compute new eigenvalues and to recreate a pd matrix is as follows:
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PDFORCE = function(Q){
N = nrow(Q)

HC = Q

D = eigen(Q)

E = D$values

U = D$vectors

v = as.numeric(E < 0)

m = sum(v) # number of negative values

if(m > 0){
S = sum(v*E)*2

W = (S*S*100)+1

P = E[N - m] # smallest positive value

k = N - m + 1

for(i in k:N){
C = E[i]

E[i] = P * (S-C)*(S-C)/W

}
HC = U %*% diag(E) %*% t(U)

}
return(HC) }

To demonstrate the procedure, use the example matrix from Jorjani et al.(2003)
where

Q =


100 95 80 40 40
95 100 95 80 40
80 95 100 95 80
40 80 95 100 95
40 40 80 95 100

 .

The eigenvalues are

E =
(

399.48 98.52 23.65 −3.12 −18.52
)
.

After using PDFORCE, the new eigenvalues were

newE =
(

399.48 98.52 23.65 .02287 .00065
)
,

and the re-constructed matrix was

Q2 =


103.17 90.83 79.47 44.54 37.07
90.83 106.50 94.18 74.07 44.54
79.47 94.18 102.33 94.18 79.47
44.54 74.07 94.18 106.50 90.83
37.07 44.54 79.47 90.83 103.17

 ,
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which is similar to the one obtained by Jorjani et al. (2003) after four iterations without
weighting factors. Their purpose, however, was to find a pd matrix that was “better”
in some sense. The purpose in this paper was to find a reasonable pd matrix that can
be used as input to REML software for estimating covariance matrices from data, or for
deriving estimated breeding values from a multiple trait BLUP analysis.

Correlation Estimates

Standard errors of estimates of correlations may not always be available from a co-
variance component analysis. The following approach is an approximation based on the
Gibbs sampling technique. Let V be the estimated covariance matrix of order N , as-
sumed to be pd (otherwise PDFORCE should be applied), and the degrees of freedom in
estimating this matrix was ndf , which is generally much larger than N . The idea is to
generate ndf random samples of N variates with covariance matrix equal to V, and to
calculate the sum of squares and crossproducts of those random variates. Then feed that
matrix of crossproducts, SS, into an inverted Wishart random matrix generator to obtain
an sample value of V. Calculate the correlations among the sample values and compute
the standard deviation of the estimates over a few thousand samplings of V.

One of the necessary operations needed is a function to convert a covariance matrix
into a correlation matrix. A simple R function for this purpose is as follows:

CORMAT = function(Q){
D = sqrt(diag(Q))

B = diag(1/D)

HC = B %*% Q %*% B

HC }

The function is used in the following manner.

R = CORMAT(M)

CORMAT(M)

The inverted Wishart generator (riwish( )), is found in the R package “MCM-
Cpack”. An R function to generate samples and calculate standard deviations of the
correlation estimates is as follows:
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CORSEE = function(nsam,ndf,V){
N = nrow(V)

T = t(chol(V))

m = (N * (N+1))/2

W = matrix(data=c(0),nrow=nsam,ncol=m)

for(i in 1:nsam) {
SS = V*0

for(j in 1:ndf) {
x=matrix(data=rnorm(N,0,1),ncol=1)

z = T %*% x

SS = SS + z %*% t(z) }
V2 = riwish(ndf,SS)

W[i, ]=hsmat(CORMAT(V2)) }
C = sqrt(diag(cov(W)))

return(C) }

The function hsmat( ) converts a full stored, symmetric matrix into a half-stored
vector, in order to save space. The function CORSEE was applied to Q2, from the previous
section. The correlations in this matrix were:

Cor(Q2) =


1.00 .87 .77 .42 .36
.87 1.00 .90 .70 .42
.77 .90 1.00 .90 .77
.42 .70 .90 1.00 .87
.36 .42 .77 .87 1.00

 .

Standard errors were approximated using nsam=500 and ndf equal to 50, 100, or 500,
(Table 1).

Table 1. Approximate standard errors of correlation estimates.
Element ndf=50 ndf=100 ndf=500
1,2 .058 .038 .015
1,3 .084 .059 .025
1,4 .165 .118 .053
1,5 .181 .123 .057
2,3 .037 .027 .011
2,4 .106 .074 .034
2,5 .170 .118 .051
3,4 .040 .028 .013
3,5 .090 .060 .025
4,5 .055 .035 .016

5



The size of the standard errors depend on ndf, but also on the magnitude of the
correlation estimate. Larger correlation estimates tend to have smaller standard errors
because they are close to the boundary of +1, and moderate correlation estimates have
larger standard errors.

Discussion

Two common problems with covariance matrices were addressed in this paper. Firstly,
for covariance matrices that were not pd, a procedure was given to modify the eigenvalues
to be positive and to re-construct the matrix as pd. The reader may use the R function
provided to try other ideas for changing negative eigenvalues to be positive. However, the
purpose of the approach was to provide a pd matrix that could be used as input to other
software for either estimating covariance matrices or for applying to multiple trait BLUP.

The second problem was that of deriving standard errors on correlation estimates
with an approximate Gibbs sampling technique. A similar approach could be taken for
obtaining standard errors on heritability estimates, if needed. The methods presented
were entirely ad hoc with the goal of being simple and quick. Theoretically better ap-
proximations are most certainly likely, but may not be necessary.
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