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Introduction22

The individual cow model was described in Henderson’s course notes as23

early as 1967. Quaas and Pollak (1980) changed the name to animal model,24

which has persisted. Animal models were first adopted in dairy cattle around25

1987 (Wiggans and Misztal, 1987) for milk production in Ayrshire dairy cattle,26

and 1988 for dairy conformation (Jamrozik and Schaeffer, 1988). Within five27

years many countries were calculating animal model genetic evaluations for28

dairy cattle traits. Kennedy et al. (1988) showed that the animal model,29

using the additive genetic relationship matrix, could account for non-random30

matings of bulls to cows, but the model still required that progeny groups of31

each mating were a random sample of all genetically possible offspring. This32

assumption is now violated due to preselection of male progeny on the basis of33

particular marker genotypes and associated genomic estimated breeding values34

(GEBV). Today, the progeny of each mating being grown and measured are35

no longer a random sample of all potential progeny, but rather an intensely36

selected set of progeny. Consequently, inclusion of selected offspring in an37

animal model biases the evaluations of the sire and dam. Bias also affects38

the EBVs of contemporaries of the selected progeny. From there the bias is39

spread to the EBVs of all animals in the pedigree. The fact that the bias is40

spread to every animal, means its effects are slightly muted over all. However,41

rankings of animals can be affected, genetic trends can be overestimated, and42

therefore, gains expected from using genomics could be lost due to bias caused43

by pre-selection. The animal model, in this situation, has become obsolete,44

and should be replaced.45

Schaeffer (2011) and Goddard (2011) proposed replacing the animal model46

with a SNP genotype effects model (SGEM). SGEM have been published by47

various authors since 2001, but now there is a pressing need to use them in48

place of animal models. In a SGEM attention is on the unbiased estimation49

of SNP genotype effects rather than on animal breeding values. The SGEM is50

the same as an animal model, except the many hundreds of thousands animal51

additive genetic values are dropped and replaced by 50,000 (or fewer) SNP52

genotype additive effects, where the SNP genotypes (coded as 1, 0, or -1) are53

used as covariates. A problem is that not all animals with records (data) have54

been genotyped, and thus, SNP genotypes have to be predicted for all animals55

in the pedigree, using a model like that of Gengler (2007,2008) or Mulder et56

al.(2010).57
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The purpose of this paper is to illustrate all of the calculations through58

a small example that would be needed to apply a SGEM. Unbiased GEBV59

can be obtained for each animal after unbiased SNP genotype effects have60

been estimated. They can also be used to estimate genetic variances and61

covariances among traits.62

Material and Methods63

Data64

Example data are given in Table 1. There are 28 animals, of which 2065

have observations and 14 have been genotyped for 7 SNPs. Normally, there66

would be hundreds of thousands of animals with observations, and perhaps67

30,000 would be genotyped for 50,000 SNPs. In this example, the 7 SNPs are68

assumed to account for all of the genetic effects in the trait (which is how the69

example was constructed). Four animals are inbred. Two traits have been70

observed, but each trait will be processed separately.71

Table 1 goes here.72

Prediction of Marker Genotypes73

The first step in the procedure is predict SNP genotypes for animals that74

have not, or could not, be genotyped.75

Gengler et al. (2007, 2008) and Mulder et al. (2010) have used an animal76

model applied to the genotypes (-1, 0, or 1) of genotyped animals with an77

overall mean, and an animal additive effect. The additive genetic relationship78

matrix, A amongst all animals with phenotypes and ancestors, is used, and a79

very high heritability is assumed. The model for one marker at a time is80

sji = µ + gi + ei, (1)

where81

sji is marker j genotype, either -1, 0, or 1, for animal i,82

µ is an overall mean,83

gi is an animal’s breeding value for the marker genotype, and84
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ei is a residual error.85

In terms of the example, g is a vector of 28 by 1 for all of the animals86

in Table 1. The observation vector is s of 14 by 1 because only 14 animals87

were genotyped, namely, 3, 7, 10, 11, 12, 15, 16, 17, 21, 22, 23, 25, 26, and 27,88

and represents a column in Table 1 corresponding to one of the SNP markers.89

Each marker is analyzed separately.90

In matrix notation, for marker 191

s1 =



1
0
0
0

−1
−1

1
0
0
0
1
0
0
0



,

= 1µ+ Zg + e
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where92

Z =



0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

=

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0



.

The A matrix is needed for all 28 animals, and this can be calculated93

using the tabular method. Knowing that94

A = TBT′

where T is lower triangular and B is diagonal, the diagonals of B are 1 for95

animals 1 through 6, and 0.5 for all other animals, except animals 22 and 2396
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which were 15/32 for each. These allow for the easy creation of A−1 following97

Henderson’s rules (1976).98

E(g) = 0

E(e) = 0

V ar(g) = V ar

(
gw

go

)
=

(
Aww Awo

Aow Aoo

)
σ2
g

V ar(e) = Iσ2
e

where g is partitioned into animals with genotypes, gw, and animals without99

genotypes, go. Let100

σ2
e/σ

2
g = 0.05 = λ,

which corresponds to a heritability of 0.9523. A heritability of 1 might cause101

computational problems.102

The mixed model equations are103

 N 1′ 0′

1 I + Awwλ Awoλ
0 Aowλ Aooλ


 µ̂

ĝw

ĝo

 =

 1′s
s
0

 . (2)

104

The solutions for animals plus the overall mean gives a prediction of each105

animal’s genotype. The predicted genotypes can be used directly in X, as con-106

tinuous covariates, in Equation 3. Mulder et al.(2010) found a .69 correlation107

between predicted genotypes and actual genotypes in a simulation study. The108

result depends on how many animals were genotyped versus the number to109

be predicted. Each SNP marker would be analyzed separately. The predicted110

SNP genotypes can be used to analyze any trait, and only need to be calculated111

once. The results for animals in the example, (µ̂+ ĝ), are in Table 2.112

Table 2 goes here.113

The predicted genotypes should be re-calculated whenever new animals114

are added to the pedigree, or whenever new animals have been genotyped.115

The predicted genotypes can be used in analyses of any trait.116
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In some cases animals might be genotyped with different SNP chips. The117

SNP genotype effects should be on a set of SNPs that are common to each chip,118

or which can be imputed from the various different SNP chips. Imputation119

should be accomplished prior to predicting SNP genotypes for all animals.120

This would allow all genotyped animals to participate in subsequent analyses.121

One might choose to use a subset of SNPs, for example, only SNPs with122

minor allele frequencies between 0.3 to 0.5, or SNPs that are distributed evenly123

within and across chromosomes. Probably 5,000 to 50,000 SNP markers would124

be sufficient. Studies are needed to determine an optimum number of markers.125

However, the number of animals with records, Nr, and the number of geno-126

typed animals, Ng, should be greater than the number of SNP markers, m.127

(Nr > Ng > m)128

SNP Genotype Effects Model129

If animals have both phenotypic records and genotypes for markers, then130

an appropriate linear model would be131

y = Wc + Xm + e (3)

where132

y is a vector of observations,133

c is a vector of 4 contemporary group effects,134

m is a fixed vector of 7 marker additive effects,135

e is a random vector of residuals,136

W is the design matrix relating contemporary group effects to the observa-137

tions, and138

X is a matrix containing marker genotypes (i.e. the results in Table 2),139

corresponding to each observation.140

The expectations of the random vectors and the variances are given below.141
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E(e) = 0,

V ar(e) = Iσ2
e .

The equations to solve are142

(
W′W W′X
X′W X′X

)(
ĉ
m̂

)
=

(
W′y
X′y

)
.

Contemporary groups could have been a random factor, and the model,143

in real life, needs a factor to account for time trends. The number of markers,144

m, should be greatly less than the number of animals, and therefore, should145

be solvable more quickly than an animal model.146

This model is not biased by using animals that have been pre-selected147

because no animal additive genetic relationships have been utilized. Also, m148

is a vector of fixed effects in the model. The emphasis is on the unbiased149

estimation of fixed marker genotype effects through regressions on predicted150

marker genotypes.151

Each trait is analyzed separately. This simplifies the software that is152

needed to do the analysis, and reduces the amount of computer time for the153

analyses. That is, the contemporary group effects can be absorbed into the154

matrix of marker genotype effects, then the resulting matrix can be directly155

inverted and solved. No iteration procedure is necessary. The results for the156

two traits are given in Table 3.157

Table 3 goes here.158

The correlation between the SNP estimates for trait 1 with trait 2 was159

-0.29, and the correlation between phenotypes was -0.28.160

Genomic Estimated Breeding Values161

For the example, Equation 1 gives a system of order equal to 4 contem-162

porary group effects and 7 marker covariates. Thus, let m̂ consist of m̂i,j, the163

solution for the ith trait and jth marker. Let ĝ (from Table 2) consist of ĝj,k,164

the predicted genotype for the jth marker genotype of the kth animal. Then a165
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genomic EBV (GEBV) for the kth animal and the ith trait is calculated as166

GEBVi,k =
7∑

j=1

m̂i,j × ĝj,k.

Results are in Table 4.167

Table 4 goes here.168

The GEBV should become more accurate as more animals are genotyped169

and phenotyped over time. The predictions of ĝ will also become better as170

more animals are genotyped.171

The correlations of the GEBV for trait 1 with the phenotypes for trait 1172

(for 20 animals with records) was 0.89, and for trait 2 was 0.70. The correla-173

tions are less than unity because of the removal of contemporary group effects174

from the phenotypes.175

Of interest is the correlation between the GEBV and the EBV from an an-176

imal model. The regular animal model EBV are given in the last two columns177

of Table 4, from single trait analyses using heritabilities of 0.25 for trait 1 and178

0.30 for trait 2. The correlation for trait 1 between GEBV and EBV was 0.80,179

and for trait 2 was 0.56. There was no bias in the regular EBV from the animal180

model because none was built into the example data.181

Note also that the GEBV have a greater range of values than the EBV182

for each trait.183

Discussion184

The animal model is suffering from biases due to pre-selection of young185

bulls in dairy cattle. Attempts to adjust the animal model equations for pre-186

selection result in adhoc questionable methods. Since 2011, proposals have187

been made to abandon animal models and switch to a model that estimates188

SNP genotype effects, but few efforts have been made in that direction.189

The SGEM is simple from a statistical point of view, and easier than an190

animal model from a computational point of view. While the SGEM given in191

this paper is an additive genetic model, the model can be easily transformed192

to include dominance effects at each marker. Instead of one value per SNP,193

there would be three, one for each possible genotype. The next step would194

be to include interactions among SNP markers for additive by additive effects.195
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The SGEM may become as complex as researchers dare to venture. With the196

animal model, one is limited to additive genetic effects.197

One of the limitations of SGEM is the fact that SNP genotypes need to be198

predicted for every animal that have a record. However, this author contends199

that some years into the future, every dairy cattle animal that is born will200

be genotyped, and that the SNP genotypes will either be directly available or201

imputed.202

The estimated SNP genotype effects should be fairly constant from one203

year to the next, as long as there are more animals with records than there are204

SNP markers to estimate. There is no need to have reference sets of animals205

and validation sets of animals with SGEM models.206

If each country uses a SGEM and the same SNP markers, then G×E207

interactions can be studied using the estimated SNP genotype effects directly.208

Genetic correlations between countries could also be estimated using those209

solutions. GEBV may be calculated for each animal, sires and cows, within210

each country using the estimated SNP genotype effects from each country,211

without the need for SNP MACE (multiple across country evaluation) or any212

MACE. Interbull would coordinate estimated SNP genotype effects and make213

comparisons between countries.214

The actual SGEM may differ from country to country accounting for the215

little differences in data collection and factors within the country. For exam-216

ple, adjustments for age and month of calving, days pregnant, year-months of217

calving, and contemporary groups.218

The SGEM allow the simple calculation of GEBV for all animals, and not219

from a biased animal model. Rankings of animals should be more accurate,220

and hence selection decisions would be better made.221
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Table 1248

Example Data To Illustrate Methods.249

CG = Contemporary Groups250

CG Anim Sire Dam SNP Markers Trait 1 Trait 2
1 2 3 4 5 6 7

1
2
3 1 0 -1 0 -1 0 1
4
5
6
7 1 5 0 0 1 -1 0 1 -1
8 2 6

1 9 1 8 14.8 11.0
1 10 1 8 0 -1 0 0 0 0 1 7.3 7.2
1 11 1 5 0 0 1 -1 1 1 0 6.1 18.4
1 12 2 6 -1 0 0 1 -1 0 0 17.5 8.2
1 13 2 7 22.5 6.2
1 14 2 7 10.9 9.0
2 15 2 9 -1 0 1 0 -1 0 1 4.2 6.7
2 16 2 10 1 -1 -1 1 0 -1 0 17.4 8.5
2 17 2 11 0 0 0 0 1 0 -1 15.3 15.3
2 18 3 5 17.5 12.5
2 19 3 6 9.0 17.9
3 20 1 9 10.0 1.7
3 21 2 10 0 -1 0 0 1 -1 0 10.1 9.1
3 22 3 15 0 0 0 0 -1 1 1 11.8 6.6
3 23 3 16 1 -1 -1 1 0 -1 -1 26.4 3.7
3 24 4 12 13.1 9.4
3 25 4 13 0 1 1 -1 0 0 -1 17.7 13.1
4 26 2 11 0 0 0 0 1 0 0 6.7 13.3
4 27 3 17 0 -1 -1 0 0 1 0 28.7 7.5
4 28 4 9 7.4 8.7

251
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Table 2252

Predicted Genotypes For All Animals253

Anim Predicted SNP Marker Genotypes
1 2 3 4 5 6 7

1 -0.0313 -0.2856 0.6008 -0.4591 0.4359 0.5017 0.2647
2 -0.1621 -0.2103 -0.3917 0.7955 0.3528 -0.9342 -0.3509
3 1.0390 0.0842 -0.9693 0.3478 -0.5457 0.0304 0.9795
4 -0.1798 0.3845 0.2185 -0.6223 -0.1306 -0.2626 -0.5750
5 -0.2561 -0.0845 0.2867 -0.7825 0.3021 0.3039 -0.9091
6 -0.4403 0.0810 0.2243 0.6900 -0.4450 0.3301 0.5602
7 0.0161 0.0655 0.8963 -0.7345 0.3365 0.8471 -0.9323
8 -0.3858 -0.3622 -0.1236 0.7074 -0.1762 -0.4001 0.4946
9 -0.5628 -0.2604 0.5479 -0.0126 -0.2724 0.1276 0.6879

10 0.1268 -0.8323 -0.0004 0.3407 0.4223 -0.0720 1.0013
11 -0.2287 -0.1890 0.6089 -0.9585 1.0345 0.5933 -0.2903
12 -1.2407 -0.2698 -0.4032 0.8843 -0.9448 -0.4575 -0.3087
13 0.0808 0.3636 0.6053 -0.0369 0.5231 0.0689 -0.6853
14 -0.0431 -0.0425 0.2822 0.0604 0.3745 -0.0136 -0.6117
15 -0.9380 0.0247 0.8297 0.2508 -0.6314 -0.1167 0.9181
16 0.8640 -0.9840 -1.0675 1.1482 0.2812 -1.1517 -0.0940
17 0.0764 0.0962 0.0101 0.3176 1.3577 0.0107 -0.8386
18 0.2581 -0.1335 -0.4746 -0.3507 -0.2552 0.0338 -0.0982
19 -0.1200 -0.3368 -0.7919 0.0995 -0.9148 -0.2391 0.3505
20 -0.1364 -0.1124 0.7350 -0.0752 0.2423 0.4753 0.6369
21 0.0113 -0.9033 -0.0963 0.2764 1.2299 -1.0678 0.0284
22 0.0000 0.0405 -0.1024 0.2346 -0.6942 0.7695 0.9762
23 0.9483 -0.9540 -1.1396 1.1393 0.2112 -1.1298 -0.9220
24 -0.3432 0.4244 0.2747 0.4980 -0.1707 0.0069 -0.0749
25 -0.2333 0.7546 0.6264 -0.9559 0.0617 -0.3634 -1.2092
26 -0.3051 -0.2652 -0.3688 -0.0828 0.9575 -0.4287 -0.3305
27 0.1800 -0.7313 -0.9147 0.3714 0.4389 0.9144 0.1217
28 -0.2171 0.2162 0.5374 -0.1633 -0.0473 0.0867 0.2106

254
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Table 3255

Solutions from SGEM for example data.256

Item Trait 1 Trait 2
CG 1 14.337 13.358
CG 2 13.070 12.776
CG 3 14.264 9.221
CG 4 13.395 8.226
snp 1 -2.469 -2.000
snp 2 -6.542 10.721
snp 3 -7.353 -8.887
snp 4 -5.843 -3.921
snp 5 -7.073 5.600
snp 6 2.049 -2.037
snp 7 -10.701 4.603

257
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Table 4258

GEBV from SGEM and EBV from animal model for animals in Example259

Data.260

Anim Sire Dam GEBV EBV
Trait 1 Trait 2 Trait 1 Trait 2

1 0 0 -2.7319 -4.1105 -1.9585 -0.6330
2 0 0 -0.3825 0.6667 0.6001 -1.5113
3 0 0 1.1782 6.8458 2.6518 -0.2479
4 0 0 -0.3985 2.8792 -0.6874 0.9594
5 0 0 2.4322 -1.9717 0.1473 1.2853
6 0 0 -0.0976 -4.3094 -0.7533 0.1475
7 1 5 9.0977 -8.8208 -0.4379 0.0985
8 2 6 -2.8221 -2.8908 -0.6517 -1.2368
9 1 8 -5.7706 -5.1327 -2.0477 -1.4907

10 1 8 -4.9474 -4.0074 -1.7126 -1.4890
11 1 5 -6.9651 0.7668 -1.7672 1.9735
12 2 6 2.2444 -5.0614 0.3538 -0.8983
13 2 7 4.1583 -2.6375 1.4513 -0.9989
14 2 7 4.3576 -4.0771 -0.3537 -0.8692
15 2 9 -9.0638 -5.4972 -1.9913 -2.3189
16 2 10 2.3673 -3.8338 0.8522 -2.2174
17 2 11 2.4020 2.6446 0.7022 0.4658
18 3 5 1.8052 2.4371 1.9409 0.3842
19 3 6 0.5403 1.2682 0.3406 0.8686
20 1 9 -4.2512 -4.6216 -2.4174 -2.0047
21 2 10 -3.6847 -1.0145 -1.1629 -1.0598
22 3 15 -2.8965 -0.7468 -0.1337 -1.3204
23 3 16 11.9437 -7.2520 3.0689 -1.7633
24 4 12 0.9230 -1.0911 -0.4006 0.2537
25 4 13 1.4814 3.0000 0.7269 0.8652
26 2 11 -7.8608 7.0972 -1.5942 0.8065
27 3 17 13.5606 -1.1473 3.4863 -0.3176
28 4 9 -3.0845 -1.1268 -2.1662 -0.4144
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