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1 Introduction

When working on simulation projects involving animals and genetics,
genetic parameters are obtained by searching the literature for estimates.
There are seldom any studies that include all of the traits of interest
in one comprehensive analysis. Instead, estimates are scavenged from
several different sources. After putting these estimates together into one
covariance matrix, the likelihood that the matrix is singular is greater
than 0. When the matrix is singular, of course, it cannot be inverted and
it cannot be used for simulating traits on animals. Thus, a method of
forcing the matrix to be positive definite would be useful, as long as most
of the correlations between traits are maintained close to the estimates
that were found. Estimated parameters have non-zero standard errors,
and thus, there is some flexibility in correlations that can be allowed.

Hayes and Hill (1981) presented the “bending” procedure to modify
eigenvalues of singular matrices, and Jorjani et al.(2003) gave a weighted
bending procedure. Finally, Meyer and Kirkpatrick (2010) presented
bending using a penalized maximum likelihood method. To me, however,
the bending procedure causes many correlations and actual variances to
differ more than expected from the original values. For example, if the
variance of one trait was 100, then after bending it could be 70. The
variances at least should not differ very much before and after modifica-
tion.

Thus, over the years I have played with different approaches, until I
think I have one that works, at least to my satisfaction. So the objective
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of this little paper is to present the method and share it with whomever
wants to use it. There were some inconsistencies in the previous paper,
and so they have been corrected in this version, hopefully. Also, the
approach is a little different.

2 Example

To demonstrate the procedure, let

G =


100 95 80 40 40
95 100 95 80 40
80 95 100 95 80
40 80 95 100 95
40 40 80 95 100

 = UDU′.

The eigenvalues are the diagonals of D,

diagD =
(

399.48 98.52 23.65 −3.12 −18.52
)
.

2.1 Step 1

Sum together the negative eigenvalues and multiply by 2.

s = (−3.12 − 18.52) ∗ 2 = −43.28.

Now square this value, multiply by 100 and add 1.

t = (s ∗ s) ∗ 100 + 1 = 187, 316.84.

2.2 Step 2

Change the negative eigenvalues to positive by the following: Let n be
a negative eigenvalue, and let p be the lowest positive eigenvalue. Then
the new eigenvalue is

n∗ = p × (s− n) × (s− n)/t.
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For example, n = −3.12 becomes

n∗ = 23.65 × (−43.28 − n) × (−43.28 − n)/187316.84 = 0.20363,

and n = −18.52 becomes

n∗ = 23.65 × (−43.28 − n) × (−43.28 − n)/187316.84 = 0.07740.

2.3 Step 3

Reconstruct the covariance matrix using a modified D

D∗ =
(

399.48 98.52 23.65 0.20363 0.07740
)
,

and
G∗ = UD∗U′

G∗ =


103.18978 90.82704 79.43676 44.56754 37.06769
90.82704 106.54177 94.13679 74.06296 44.56754
79.43676 94.13679 102.46432 94.13679 79.43676
44.56754 74.06296 94.13679 106.54177 90.82704
37.06769 44.56754 79.43676 90.82704 103.18978

 .

3 Discussion

If G and G∗ are converted to correlation matrices (C), and then the
differences between the two correlation matrices are calculated as

CG∗ − CG =


0 −0.084 −0.027 0.025 −0.041

−0.084 0 −0.049 −0.105 0.025
−0.027 −0.049 0 −0.049 −0.027

0.025 −0.105 −0.049 0 −0.084
−0.041 0.025 −0.027 −0.084 0

 .

The changes are certainly within the standard errors of the original
estimates. If the original estimates had much smaller standard errors,
then this matrix would be less likely to have any negative eigenvalues.
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The method described here does not have any known statistical prop-
erties or advantages, except that the resulting matrix is positive definite
and relatively close to the input matrix. The “bending” procedure, on
the other hand, also makes a matrix positive definite, and according to
Hayes and Hill (1981) optimizes the selection indices that are constructed
from the modified covariance matrix. I am not sure if this is a good prop-
erty to have or not. I have not taken the time to repeat the Hayes and
Hill (1981) study using the current method. I leave such a study to a
clever and eager student.
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