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Chapter 1

Longitudinal Data

1.1 Introduction

A simple example of longitudinal data is the weight of an animal taken
at different ages. Meat animals, like beef cattle, pigs, and sheep, are
weighed two or three times from birth to market age, generally at birth,
at weaning, and at market age. Weighing animals takes time and labour.
Birth is always day 1, but weaning and market ages are not the same for
every animal. Weights get larger over time because animals grow, and
the variance of weights also increases with age.

Another example is the lactation yield of dairy cows, sheep, or goats.
Dairy animals are milked two or more times daily for up to a year after
they give birth. Typically, 24-h production increases shortly after the
animal gives birth, peak at a few weeks after parturition, then slowly
decreases until the animal dries up in preparation for the next parturition.
Milk recording programs send supervisors to herds once a month or less
frequently to weigh the milk and take samples for lab analyses of content.
Thus, an animal might give milk for over 300 days, but there might only
be seven to ten supervised weighings during that period. Herds with
robotic milking machines can have daily weighings.

Traits measured at various times during the life of an animal are
known as longitudinal data. Because the weights or yields occur at dif-

9



10 CHAPTER 1. LONGITUDINAL DATA

ferent ages or times, they are not the same trait. Weights at birth and
weaning may have a positive correlation, but it is less than unity. Milk
weights at day 10 and day 300 may also be correlated, but again that
correlation is much less than unity. Thus, the weight of an animal on
every day of life is a ‘different’ trait. Every milk weight from the start of
lactation to the end is a ‘different’ trait. There is a continuum of points
in time when an animal could be observed for a trait. These traits have
also been called infinitely dimensional traits.

Instead of age or time, observations could be based on degree of
maturity or weight. For example, fat content of an animal would change
depending on an animal’s weight or amount of feed ingested, regardless
of age.

In general, there is a starting point, tmin, e.g. birth or parturition,
at which observations start to be taken. The observations are made
either at specific intervals or at random intervals, and the number of
observations can vary from animal to animal. Then there is the end
point, tmax, beyond which no more observations are made, or are not of
interest. Each observation, yti, has an associated ti. For simplicity, ti,
are whole integer numbers. There could be a dozen or so points, or there
could be 400 points. The number depends on the trait and situation.

Orthogonal polynomials have been suggested for use with longitu-
dinal data to model the shape of a growth curve or a lactation curve.
The reason being that orthogonal polynomials would be less correlated
to each other than would be the correlation between polynomials of age.
One simple type of orthogonal polynomials are Legendre polynomials,
discovered in 1797. In order to use Legendre polynomials or other kinds
of orthogonal polynomials, the time values (whole integer numbers) must
be scaled to range from -1 to +1. The scaling formula is

qi = −1 + 2
(

ti − tmin

tmax − tmin

)
.

The qi are decimal numbers.

Plotting yti against ti (or against qi) gives a shape that is called
the trajectory. This could be a lactation curve, or a growth curve, or
an S-curve. The goal is to find a function that fits this trajectory as
closely as possible and to study the amount of animal variation around
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the trajectory from tmin to tmax. This type of study involves covariance
functions and random regression models.

Covariance functions help to predict the change in variation from
tmin to tmax for the population. Random regression models provide a way
to estimate covariance functions, and to determine individual differences
in trajectories.

1.2 Collect Data

The first step in the study of longitudinal data, is to collect data. In order
to illustrate a few basic concepts, consider the following experiment. Two
hundred female mice were sampled every hour after an injection with
glucose to observe the change in blood insulin levels over the next nine
hours. This gave a total of 1800 observations, on two hundred unrelated
individuals. A small sample of the data are shown in Table 1.1.

Table 1.1
Insulin levels in female mice.

Mouse Time After Injection of Glucose, min
60 120 180 240 300 360 420 480 540

1 11.9 9.7 8.7 4.5 5.3 1.9 2.3 1.6 1.0
2 12.9 10.0 7.5 3.3 1.7 2.3 2.3 2.1 0.5
3 12.2 10.0 6.0 4.2 4.4 2.7 2.2 2.9 0.2
4 12.6 10.1 9.5 5.9 5.8 3.4 0.9 0.5 0.7
5 12.7 10.5 8.2 5.4 4.7 2.1 1.9 3.2 0.2

A plot of all 200 mouse insulin decay trajectories are shown in Figure
1.1.
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Figure 1.1
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Note the general shape of the decay trajectory for all mice. Also, note
the variability that exists around the average curve (shown in red). Thus,
mice have different decay trajectories. We want to study the variability
between mice.

Using data on the 200 mice the covariance matrix of the insulin
amounts at each hour (a 9× 9 matrix) can be calculated as follows.

V =



0.8852 0.8352 0.6916 0.0350 0.1089 −0.0050 −0.0417 −0.0476 −0.0156
0.8352 0.9574 0.4621 0.0399 0.1607 −0.0281 −0.0433 −0.0203 0.0197
0.6916 0.4621 1.4005 0.1154 0.1556 0.0270 −0.1918 −0.1106 −0.0052
0.0350 0.0399 0.1154 0.9331 0.0454 −0.0723 −0.0362 −0.0030 0.0117
0.1089 0.1607 0.1556 0.0454 0.7993 0.1204 −0.0518 −0.0414 0.0558
−0.0050 −0.0281 0.0270 −0.0723 0.1204 0.6833 0.0015 −0.0086 −0.0211
−0.0417 −0.0433 −0.1918 −0.0362 −0.0518 0.0015 0.5807 0.0474 −0.0035
−0.0476 −0.0203 −0.1106 −0.0030 −0.0414 −0.0086 0.0474 0.4409 −0.0291
−0.0156 0.0197 −0.0052 0.0117 0.0558 −0.0211 −0.0035 −0.0291 0.2855


V = {σti,tj}.

This matrix is automatically a positive definite matrix by virtue of
the way it was calculated, but a good practice is to always check each
matrix. The eigenvalues (EV ) were all positive, as shown below, and
therefore V is positive definite.
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EV =



2.48452319
0.96233482
0.86962324
0.80221637
0.59747351
0.50820761
0.42359840
0.27266640
0.04525645


.

1.3 Covariance Functions

Kirkpatrick et al.(1991) proposed the use of covariance functions for lon-
gitudinal data. A covariance function (CF) is a way to model the vari-
ances and covariances of a longitudinal trait. Orthogonal polynomials are
used in this model and Legendre polynomials are the easiest to apply.
Each element of V is modeled as

σti,tj = φ(qi)
′Kφ(qj),

where φ(qi) is a vector of functions of time, qi, and K is a matrix of
constants necessary to estimate σti,tj . The matrix K must be estimated.

In the example, V, above, there are m = 9 time periods, and there-
fore, there are m∗(m+1)/2 = 45 parameters in V. In Table 1.2 are the
time variables and the standardized time values. Note that tmin = 60,
and tmax = 540.
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Table 1.2
Time Variables of Mouse Data.

Item ti (minutes) qi
1 60 -1.00
2 120 -0.75
3 180 -0.50
4 240 -0.25
5 300 0.00
6 360 0.25
7 420 0.50
8 480 0.75
9 540 1.00

Legendre polynomials, Pk(x), are defined as follows, for x being one
of the qi.

P0(x) = 1, and

P1(x) = x,

then, in general, the (n + 1)st polynomial is described by the following
recursive equation:

Pn+1(x) =
1

n+ 1
((2n+ 1)xPn(x)− nPn−1(x)) .

These quantities are “normalized” using

φn(x) =
(

2n+ 1

2

).5

Pn(x).

This gives the following series,

φ0(x) =
(

1

2

).5

P0(x) = .7071

φ1(x) =
(

3

2

).5

P1(x)

= 1.2247x

P2(x) =
1

2
(3xP1(x)− 1P0(x))

φ2(x) =
(

5

2

).5

(
3

2
x2 − 1

2
)

= −.7906 + 2.3717x2,
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and so on.

Because V is 9×9, then to model all of the σti,tj we need 9 orthogonal
polynomials. Thus, we need Legendre polynomials of order 8, where 8 is
the highest order of polynomials of time. Order of 8 means there are 9
covariables (including time to the power of 0).

Table 1.3
Legendre Polynomials of Order 8.

0 0.7071 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 1.2247 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 -0.7906 0.0 2.3717 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 -2.8062 0.0 4.6771 0.0 0.0 0.0 0.0 0.0
4 0.7955 0.0 -7.9550 0.0 9.2808 0.0 0.0 0.0 0.0
5 0.0 4.3973 0.0 -20.5206 0.0 18.4685 0.0 0.0 0.0
6 -0.7967 0.0 16.7312 0.0 -50.1935 0.0 36.8086 0.0 0.0
7 0.0 -5.9907 0.0 53.9164 0.0 -118.6162 0.0 73.4291 0.0
8 0.7972 0.0 -28.6992 0.0 157.8457 0.0 -273.5992 0.0 146.571

A simple R function that will give you the above table follows.

LPOLY = function(no) {

if(no > 9 ) no = 9

nom = no - 1

phi = matrix(data=c(0),nrow=9,ncol=9)

phi[1,1]=1

phi[2,2]=1

for(i in 2:nom){

ia = i+1

ib = ia - 1

ic = ia - 2

c = 2*(i-1) + 1

f = i - 1

c = c/i

f = f/i

for(j in 1:ia){

if(j == 1){ z = 0 }

else {z = phi[ib,j-1]}

phi[ia,j] = c*z - f*phi[ic,j]

}

}
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for( m in 1:no){

f = sqrt((2*(m-1)+1)/2)

phi[m, ] = phi[m, ]*f

}

return(phi[1:no,1:no])

}

Let the matrix in Table 1.3 be denoted as Λ′. Now define another
matrix, M, as a matrix containing the polynomials of standardized time
values.

Therefore,

M =
{

1 qi q2i q3i q4i q5i q6i q7i q8i

}

=



1 −1.00 1.0000 −1.000000 1.00000000 −1.0000000000
1 −0.75 0.5625 −0.421875 0.31640625 −0.2373046875
1 −0.50 0.2500 −0.125000 0.06250000 −0.0312500000
1 −0.25 0.0625 −0.015625 0.00390625 −0.0009765625
1 0.00 0.0000 0.000000 0.00000000 0.0000000000
1 0.25 0.0625 0.015625 0.00390625 0.0009765625
1 0.50 0.2500 0.125000 0.06250000 0.0312500000
1 0.75 0.5625 0.421875 0.31640625 0.2373046875
1 1.00 1.0000 1.000000 1.00000000 1.0000000000

1.000000 −1.0000000 1.000000
0.177979 −0.1334839 0.100113
0.015625 −0.0078125 0.003906
0.000244 −0.0000610 0.000015
0.000000 0.0000000 0.000000
0.000244 0.0000610 0.000015
0.015625 0.0078125 0.003906
0.177979 0.1334839 0.100113
1.000000 1.0000000 1.000000


.

This gives

Φ = MΛ,

=



0.7071068 −1.2247449 1.5811388 −1.8708287 2.1213203
0.7071068 −0.9185587 0.5435165 0.1315426 −0.7426693
0.7071068 −0.6123724 −0.1976424 0.8184876 −0.6131942
0.7071068 −0.3061862 −0.6423376 0.6284815 0.3345637
0.7071068 0.0000000 −0.7905694 0.0000000 0.7954951
0.7071068 0.3061862 −0.6423376 −0.6284815 0.3345637
0.7071068 0.6123724 −0.1976424 −0.8184876 −0.6131942
0.7071068 0.9185587 0.5435165 −0.1315426 −0.7426693
0.7071068 1.2247449 1.5811388 1.8708287 2.1213203
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−2.3452079 2.54950976 −2.73861279 2.9154759
0.9765020 −0.71584364 0.09361538 0.5761252
−0.2107023 0.82410911 −0.61110647 −0.2146925
−0.7967180 0.06189377 0.76658885 −0.4444760

0.0000000 −0.79672180 0.00000000 0.7972005
0.7967180 0.06189377 −0.76658885 −0.4444760
0.2107023 0.82410911 0.61110647 −0.2146925
−0.9765020 −0.71584364 −0.09361538 0.5761252

2.3452079 2.54950976 2.73861279 2.9154759


,

which can be used to specify the elements of V as

V = ΦKΦ′

= M(ΛKΛ′)M′

= MHM′.

Note that Φ, M, and Λ are matrices defined by the Legendre polynomial
functions and by the standardized time values and do not depend on the
data or values in the matrix V. One can estimate either K or H,

Estimate K using

K = Φ−1VΦ−T ,

=



0.51696 −0.10761 0.51424 0.01598 0.34633
−0.10761 0.35040 −0.00961 0.02374 0.04881

0.51424 −0.00961 1.20888 −0.10372 0.66167
0.01598 0.02374 −0.10372 0.32922 −0.05996
0.34633 0.04881 0.66167 −0.05996 0.59757
−0.03278 0.02711 −0.07196 −0.00723 −0.04682
−0.13492 −0.02044 −0.28443 0.05744 −0.24611

0.02114 −0.12437 0.13495 −0.24125 0.10218
−0.49907 −0.05387 −1.02176 0.06434 −0.70061

−0.03278 −0.13492 0.02114 −0.49907
0.02711 −0.02044 −0.12437 −0.05387
−0.07196 −0.28443 0.13495 −1.02176
−0.00723 0.05744 −0.24125 0.06434
−0.04682 −0.24611 0.10218 −0.70061

0.12477 0.01695 −0.12536 0.08352
0.01695 0.17716 −0.05564 0.22522
−0.12536 −0.05564 0.35359 −0.12008

0.08352 0.22522 −0.12008 1.03220


,
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and estimate H using

H = M−1VM−T

=



0.7993 0.3759 −16.2282 −4.1121 85.2585
0.3759 18.8458 −17.7140 −140.9800 116.0053

−16.2282 −17.7140 565.2491 145.2098 −3353.8067
−4.1121 −140.9800 145.2098 1244.7194 −1032.9673
85.2585 116.0053 −3353.8068 −1032.9673 20823.0945
8.2512 279.3968 −275.2019 −2605.3471 2024.2377

−149.0388 −221.6913 6130.4997 2044.5953 −38807.8169
−4.5415 −157.4900 148.5089 1505.9029 −1117.0747
79.2916 123.1336 −3327.8998 −1156.0341 21270.5182

8.2512 −149.0388 −4.5415 79.2916
279.3968 −221.6913 −157.4900 123.1336
−275.2019 6130.4997 148.5089 −3327.8998
−2605.3471 2044.5953 1505.9029 −1156.0341

2024.2377 −38807.8169 −1117.0747 21270.5182
5566.7003 −4064.5381 −3249.7079 2313.7405
−4064.5381 72970.3381 2262.0269 −40177.7306
−3249.7079 2262.0269 1906.4858 −1292.3600

2313.7405 −40177.7306 −1292.3600 22174.7101


.

Note the difference in magnitude of elements in K compared to H. Now
calculate the correlations among the elements in the two matrices.

Cor(K) =



1.00 −0.25 0.65 0.04 0.62 −0.13 −0.45 0.05 −0.68
−0.25 1.00 −0.01 0.07 0.11 0.13 −0.08 −0.35 −0.09

0.65 −0.01 1.00 −0.16 0.78 −0.19 −0.61 0.21 −0.91
0.04 0.07 −0.16 1.00 −0.14 −0.04 0.24 −0.71 0.11
0.62 0.11 0.78 −0.14 1.00 −0.17 −0.76 0.22 −0.89
−0.13 0.13 −0.19 −0.04 −0.17 1.00 0.11 −0.60 0.23
−0.45 −0.08 −0.61 0.24 −0.76 0.11 1.00 −0.22 0.53

0.05 −0.35 0.21 −0.71 0.22 −0.60 −0.22 1.00 −0.20
−0.68 −0.09 −0.91 0.11 −0.89 0.23 0.53 −0.20 1.00


,

and

Cor(H) =



1.00 0.10 −0.76 −0.13 0.66 0.12 −0.62 −0.12 0.60
0.10 1.00 −0.17 −0.92 0.19 0.86 −0.19 −0.83 0.19
−0.76 −0.17 1.00 0.17 −0.98 −0.16 0.95 0.14 −0.94
−0.13 −0.92 0.17 1.00 −0.20 −0.99 0.21 0.98 −0.22

0.66 0.19 −0.98 −0.20 1.00 0.19 −1.00 −0.18 0.99
0.12 0.86 −0.16 −0.99 0.19 1.00 −0.20 −1.00 0.21
−0.62 −0.19 0.95 0.21 −1.00 −0.20 1.00 0.19 −1.00
−0.12 −0.83 0.14 0.98 −0.18 −1.00 0.19 1.00 −0.20

0.60 0.19 −0.94 −0.22 0.99 0.21 −1.00 −0.20 1.00


.
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In H many of the correlations round off to +1 or -1, which means that H
is very close to being singular. This is not a good property for using H
to construct mixed model equations. This could lead to poor estimation
of effects in the model.

By contrast, the largest correlation in K is only -0.91. K is not close
to singularity, and should be safe to invert. The signs of the correlations
are often opposite to those in H. K is a much preferred matrix for use
in mixed model equations.

1.3.1 Predictions of Covariances

Once there is an estimate of K, then the covariance function model can
be used to calculate variances and covariances between other time points
(between tmin and tmax). For example, let t150 = 150 minutes and t400 =
400 minutes, neither of which were actually observed or recorded in the
200 mice, but both points are within the upper and lower bounds of the
experimental period.

First, calculate the standardized time equivalents (between -1 to
+1).

q150 = −0.6250

q400 = +0.4167

Set up the matrix M for these two points,

M′ =



1 1
−0.6250000 0.4166667
0.3906250 0.1736111
−0.24414062 0.07233796
0.15258789 0.03014082
−0.09536743 0.01255867
0.059604645 0.005232781
−0.037252903 0.002180325
0.0232830644 0.0009084689


,



20 CHAPTER 1. LONGITUDINAL DATA

The Legendre polynomials are

Φ′ = (MΛ)′

=



0.7071068 0.7071068
−0.7654655 0.5103104
0.1358791 −0.3788145
0.6120387 −0.8309381
−0.8957736 −0.3058426
0.5003195 0.5797175
0.2739309 0.7877318
−0.84232235 0.7767490
0.7767490 −0.7262336


.

Φ K Φ′ =

(
2.767230 −0.4789920
−0.478992 0.5497332

)
.

Thus, the variance at 150 minutes is expected to be 2.767, and for
400 minutes is 0.550.

Suppose the variance for 700 minutes was needed. This could not be
predicted or calculated because tmax is only 540 minutes. Do not predict
variances for time periods outside the observed range.

1.4 Reduced Order of Fit

In the previous example, the matrix V was 9 × 9, and the Legendre
polynomials were generated for a Full fit, with 9 covariates. Thus, the
covariance function model resulted in no errors. All of the calculated
variances and covariances were exactly the same as those in the original
V.

Kirkpatrick et al.(1990) suggested looking at the eigenvalues of the
matrix K from a full rank fit. Below are the values. The sum of all the
eigenvalues was 4.690745, and also shown is the percentage of that total.
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Table 1.4
Eigenvalues of K.

K
Eigenvalue Percentage

2.980498752 63.5
0.624171898 13.3
0.433933695 9.3
0.208716099 4.4
0.195913819 4.2
0.135701396 2.9
0.102963163 2.2
0.007215617 0.2
0.001630618 0.03

The majority of change in elements in K is explained by the first
three eigenvalues at 86.1 %. The first seven explain 99.8 %. If a cut-off
is set to 95%, then the first 5 eigenvalues would be important.

Covariance functions can be based on fewer than 9 covariates. Thus,
the orders of fit can be 8, 7, 6, 5, 4, 3, 2, 1, or 0. Order 0 implies that
all of the elements in V are the same, which is obviously not true.

Use the subscript r to indicate a reduced order of fit, that is, r < 8,
then

V = ΦrKrΦ
′
r + E,

for r < 8, and where Φr is a rectangular matrix of rank r composed of
the first r columns of Φ, and E is a matrix of residuals because any lower
order fit will not be perfect. Thus, Φr does not have an inverse, but we
can obtain an estimate of Kr. To determine Kr, first pre-multiply V by
Φ′r and post-multiply that by Φr as

Φ′rVΦr = Φ′r(ΦrKrΦ
′
r)Φr

= (Φ′rΦr)Kr(Φ
′
rΦr).

Now pre- and post- multiply by the inverse of

(Φ′rΦr) = P
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to determine Kr,

Kr = P−1Φ′rVΦrP
−1.

Kr will be square with r rows and columns.

With Kr we can estimate Vr as

Vr = ΦrKrΦ
′
r.

This matrix is symmetric with 45 unique elements, but only has rank r.
The half-store function in R is a way of changing a matrix to a vector of
the unique elements.

hsmat <- function(vcvfull) {

mord = nrow(vcvfull)

np = (mord *(mord + 1))/2

desg = rep(0,np)

k = 0

for(i in 1:mord){

for(j in i:mord){

k = k + 1

desg[k] = vcvfull[i,j] } }

return(desg) }

Let

ssr = ||hsmat(V − Vr)||/||hsmat(V)||

be the goodness of fit statistic. The ||X|| is defined as the sum of squares
of the elements of a half-stored symmetric matrix X. Thus, ssr measures
the amount of difference between two matrices scaled by the square of the
values in the original matrix. This statistic is like a convergence criterion
for solving a set of equations. The smaller is ssr, then the less difference
there is between the two matrices.

To illustrate, for order 7, there are 8 covariates. The calculated K7

is as follows.
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K7 =



0.28382 −0.13845 0.02516 0.05280 0.00783
−0.13845 0.35040 −0.06584 0.02374 0.01210

0.02516 −0.06584 0.20045 −0.03657 −0.03170
0.05280 0.02374 −0.03657 0.32922 −0.01611
0.00783 0.01210 −0.03170 −0.01611 0.12203
0.01502 0.02711 0.01522 −0.00723 0.01010
−0.02732 −0.00793 −0.06227 0.04249 −0.09328
−0.04759 −0.12437 0.00961 −0.24125 0.02035

0.01502 −0.02732 −0.04759
0.02711 −0.00793 −0.12437
0.01522 −0.06227 0.00961
−0.00723 0.04249 −0.24125

0.01010 −0.09328 0.02035
0.12477 −0.00245 −0.12536
−0.00245 0.12822 −0.02775
−0.12536 −0.02775 0.35359


,

which is used to calculate V7, and the goodness of fit statistic is

ss7 =
||V7 −V||
||V||

= 0.1384349

To determine the probability of finding a smaller value of ssr one
can use simulation, as shown in the following R script.

N=10000

can=c(1:N)*0

VR=V

nocov = 2 # order of fit + 1

phr = PH[ ,c(1:nocov)]

PVP = t(phr)%*%VR%*%phr

PP = t(phr)%*%phr

PPI=ginv(PP)

Kr = PPI%*%PVP%*%PPI
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ndf=199

for(ko in 1:N){

Ka = rWishart(1,ndf,Kr)/ndf

Kb = Ka[, ,1]

Vr = phr%*%Kb%*%t(phr)

DEL = Vr - VR

er = hsmat(DEL)

vh = hsmat(VR)

vv = sum(vh*vh)

ssr = sum(er*er)/vv

can[ko] = ssr

} #end of samples

hist(can,breaks=50)

Then compare the ssr to the histogram to find the probability of obtain-
ing a smaller statistic. With an order of fit equal to 1, ssr = 0.4592. In
R one can use

kb = order(-can)

ncan = can[kb]

ncan[1:10]

kc=which(ncan < 0.4592)

prob = 0

if(length(kc)>0)prob = 1 - (kc[1]/length(ncan))

prob

This gives 0.4379 which is a pretty large probability. Similarly for
the other orders, one gets the results in Table 1.5.
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Table 1.5
Test statistics for

reduced order of fit models.
Order Covariates ssr Probability

1 2 0.4591629 0.4379
2 3 0.4112741 0.2854
3 4 0.3132577 0.2699
4 5 0.2564594 0.1864
5 6 0.1992198 0.1138
6 7 0.1384349 0.0389
7 8 0.0495289 0.0001

Orders 1, 2, 3, 4, and 5, gave Vr that were significantly different
from V (i.e. probabilities greater than 0.05) while orders 6 and 7 were
not different from V (i.e. less than 0.05). Order 6 would be a sufficient
minimal fit for the mice insulin decay data.

The mouse data example is entirely fictitious.

1.5 Starting V

The most frequent situation is that one is faced with a file of data on
growth or lactation production, not from any experiemt, and where ani-
mals are measured at many different ages or many different days in milk.
The researcher does not have any V matrix with which to start. What
can or should be done?

1.5.1 Literature Search

The first option is to check the literature to see if random regression
or covariance function studies have been made in the same species or
others. Possibly one of these papers has published a correlation matrix
for different time periods or ages. The correlation results may be used as
the initial values for your current data. Then estimate new values from
your own data.
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1.5.2 Covariances among Phenotypes

Stratify your data into 9 or 10 artificial groups on the basis of age or
days in milk, and calculate the phenotypic variances within each group
and covariances between groups for animals that have a record in that
pair of groups. This matrix is very likely not positive definite because
each element will be based on different numbers of animals, and not the
same animals. To make a matrix positive definite, the following R script
could be used.

# Let A be the matrix to be made p.d.

# no be the order of the matrix

E = eigen(A)

ev = E$values

U = E$vectors

no = dim(A)[1]

nev = which(ev < 0)

wr = 0

k=length(nev)

if(k > 0){

p = ev[no - k]

B = sum(ev[nev])*2.0

wr = (B*B*100.0)+1

val = ev[nev]

ev[nev] = p*(B-val)*(B-val)/wr

A = U%*%diag(ev)%*%t(U)

}

To illustrate making a matrix positive definite, take

A =


9 7 2 1
7 6 3 4
2 3 11 7
1 4 7 9

 ,

which has the following eigenvalues,
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E = eigen(A)

ev = E$values

ev

[1] 20.9576366

[2] 11.1578605

[3] 3.3289730

[4] -0.4444701

U = E$vectors

no = dim(A)[1]

nev = which(ev < 0)

nev

# = ( 4 )

wr = 0

k=length(nev) # k=1

if(k > 0){

p = ev[no - k]

# = 3.3289730 lowest positive eigenvalue

B = sum(ev[nev])*2.0 # = -0.8889403

wr = (B*B*100.0)+1 # = 80.02148

val = ev[nev] # = -0.4444701

ev[nev] = p*(B-val)*(B-val)/wr

# = 0.00821843

A = U%*%diag(ev)%*%t(U)

}

The new eigenvalues are used with the original eigenvectors to re-
generate the new, positive definite A matrix.

A =


9.135600 6.812468 1.973774 1.084506
6.812468 6.259353 3.036270 3.883131
1.973774 3.036270 11.005072 6.983656
1.084506 3.883131 6.983656 9.052664

 .

Once there is a positive definite V matrix, then a covariance function
analysis to find the best minimum order of fit can be carried out.

V can be scaled to a genetic covariance matrix by multiplying by
heritability. Or multiply times (r − h2) for a permanent environmental
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covariance matrix. All of these matrices are for the purpose of giving suit-
able starting or initial values of those matrices for the statistical model.

The best method of estimation is a Bayesian approach using Gibbs
sampling, which would allow all of the data to be utilized.

1.6 Data Requirements

Suppose a fixed regression model for growth of sheep is to be studied.
Each lamb has, at most, three weight measurements, and from that co-
efficients for 5 covariates are to be estimated. With three data points
we can only estimate coefficients for 3 covariates because there would
be no degrees of freedom remaining. However, because we have many
lambs weighed at various ages, it is possible to estimate coefficients for
5 covariates across lambs, but not for individual lambs.

The same logic must have some effect on a random regression model,
even though with animal genetic effects are random, it is computationally
possible to estimate 5 coefficients per lamb. However, the quality of those
estimates might be questionable. In early test day models, researchers
required cows to have 7 or more test day records before an attempt was
made to estimate covariance matrices with orders of fit equal to 5 or 6
(Jamrozik et al. 1998).

A general recommendation is, if the number of weights per animal
is three or less, then a multiple trait animal model with each weight as
a separate trait is the preferred mode of analysis. With more than three
weights per animal (on average), then a random regression model could
be employed. The appropriate order of fit should not be greater than the
average number of weights per animal.



Chapter 2

The Models

Random regression models (RRM) are used to estimate matrices that are
part of the covariance functions to estimate a larger array of variances
and covariances. RRM are also used to model the shape or trajectory of
observations taken over time. Phenotypically, the trajectory has to be
fitted, and at the same time the variation along the trajectory needs to
be considered.

2.1 Fitting The Trajectory

Most trajectories are smooth, continuous, and can be fit with very few
covariates. Sometimes, however, the trajectory is unknown and may
be undefined with ups and downs over time. There could be different
trajectories for males versus females, or for different breeds. Over the
years, the trajectories could shift due to selection of animals for faster
growth or higher milk yields. All of these factors must be considered.

The first course of action is to plot data against the time scale of
interest. Observations can be partitioned by gender, by breed, by age
at start, or by years. One should look at all aspects of the data, before
commiting to one model for analysis. Below are some fictitious data
on animals over a period of 1 to 100 days. The trait measured is the
amount of resistance to a bacteria from first day of spring to fall. Figure

29
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2.1 represents data on 6 animals with from 4 to 7 observations per animal,
a total of 34 observations.

Figure 2.1
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The data show an initial resistance that becomes less up to day 35,
then improves again until fall. Fitting the trajectory of this curve could
be problematic.

We will fit ordinary linear regressions on days on test (divided by
100) from linear to sextic equations. Legendre polynomials could be
used from order 1 to order 6, but at this stage of model building, simple
regressions suffice.
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Figure 2.2
Linear Fit
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A linear regression does not fit the data very well. The predicted y
is correlated with the original y at 0.66. Including a squared term for
days on test gave a correlation of 0.85.

Figure 2.3
Quadratic Fit
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Figure 2.4
Cubic Fit
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Figure 2.5
Quartic Fit
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Figure 2.6
Quintic Fit
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Figure 2.7
Sextic Fit
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A summary of the fit of regressions of different powers of days (di-
vided by 100) are given in Table 2.1.

Table 2.1
Correlations of ŷ with y.
Fit Correlation
Linear 0.66
Quadratic 0.85
Cubic 0.9356
Quartic 0.9423
Quintic 0.9789
Sextic 0.9740

The fit of the data improves with an increase in power of the time
variable, but none of the regressions adequately fit the low observations
from day 30 to 40. Going from Quintic to Sextic the correlation actually
decreased, so that the fit is starting to become worse.

In the quintic equation, there are waves in the first five days, and at
the very end from day 90 to 100. The lack of fit for the lower values in
days 30 to 40 persists.

What happens when there are 2000 observations rather than just 34?
Does the fit become worse or better? These functions are not entirely
adequate for fitting the trajectories.

2.1.1 Classification Approach

One hundred days can be grouped into 20 periods of 5 days each. A linear
model with time period groups could be used to model the trajectory.
That is,

yij = µ + Ti + eij,

where

yij is the jth observation within the ith time group (twenty groups),
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µ is an overall mean,

Ti is the effect of the ith time group, and

eij is a residual effect.

This model will fit the data very well, but at the expense of needing to
estimate 20 parameters rather than 6 (Quintic function) or 7.

The time groups do not need to be equal in size. Time periods of 10
or 20 days might be appropriate if the observations have about the same
magnitude over all 10 or 20 days. That would not be true in the example
data, because the values are decreasing sharply at the beginning, then
increasing quickly. The last 10 or 15 days of the 100 day period might
be able to be combined into one group. However, there is little harm
in keeping the 20 periods of 5 days each. There is no major computing
problem in doing so.

The fit of the classification model gave a correlation of 0.9975 be-
tween ŷ (red points) and y (blue points) (Figure 2.8).

Figure 2.8
Fitting Time Groups
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The time group means give a non-smooth tragectory, but it fits the
data very well. Also, one does not need to define the type of curve or
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the shape. A drawback is that days are being combined, so if resistance
is changing (increasing or decreasing) a lot from the first day to the
fifth within a group, then the group mean or Ti effect will not account
for that, and there will be errors for the predicted observations farthest
away from the middle day in the group. Forming time groups must be
handled judiciously.

In this example there were not enough observations to make smaller
time groups (e.g. 3 days each or 2 days each). The classification ap-
proach is good when you do not know what kind of function describes
the trajectory. Usually researchers are dealing with many thousands of
observations so that having 20 time groups or a 6 parameter regression
does not make very much difference in terms of estimation difficulty. One
cannot really go wrong with the classification approach over the regres-
sion approach for modelling the trajectories unless there are not sufficient
numbers of observations.

2.1.2 Spline Functions

Another approach would be to divide the trajectory into parts, such that
the parts are best fit by linear or quadratic functions. For the example,
the parts might be days 1 to 20, days 21 to 50, and days 51 to 100. A
model might be

ykj = µ+ b1Xkj + b2X
2
kj + b3Ukj + b4U

2
kj + b5Wkj + b6W

2
kj + ekj,

where

ykj is the jth observation on the kth animal,

µ is an overall mean,

Xkj is the days on test (divided by 100) corresponding to the observa-
tion,

Ukj is zero, unless days on test are greater than 20, then it is equal to
(Xkj − 0.2),



2.1. FITTING THE TRAJECTORY 37

Wkj is zero, unless days on test are greater than 50, then it is equal to
(Xkj − 0.5),

b` for ` = 1 to 6 are regression coefficients,

ekj are residual effects.

The fit of the spline function model gave a correlation of 0.9923,
which is slightly less than that of the classification model, but having
only seven parameters to estimate rather than 20. The agreement of ŷ
and y is shown in Figure 2.9.

Figure 2.9
Fitting Splines
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In practice, one would first try the classification model approach
in order to get an idea what the trajectory might be. Then pick an
appropriate regression model with fewer parameters that gives a good fit.
Having a good fit for the trajectory is important to the random regression
model. Keep in mind, that at this stage we are only concerned with the
phenotypic fit of the curve, and not with the covariance structures of
observations deviated from the curves.
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2.2 Random Variation in Curves

Assume with the fictitious resistance data, that the logical factors in the
statistical model are gender, year of test, contemporary group, animal
additive genetic, animal permanent environment, and residual effects.
Assume that there are no interactions among these factors. Suppose
also that we have several thousand animals and their data. The fixed
factors of the model are gender and year of test, and all other factors are
random factors. The fixed factors are modelled with the function that
we have chosen to fit the phenotypic trajectory, e.g. the spline function
with seven parameters. Thus, there will be a separate spline function
for each gender, and for each year of test. If there are two levels of the
gender effect, and five years, then we will have 7 curves to be estimated,
each with 7 parameters (i.e. 49 total parameters).

The random parts of the model will be modelled with Legendre poly-
nomials of order 4. (Suppose that order 4 was determined to be the best
fit). Thus, there are five parameters to be estimated for each curve to
fit the covariance functions. There will be one curve for each animal ad-
ditive genetic effect, one curve for each contemporary group effect, and
one curve for each animal permanent environmental effect. The residual
effects will be discussed in the next section.

A comparison of a typical linear model and a random regression
model are shown in Table 2.2.
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Table 2.2
Usual Linear Model versus Random Regression Model (RRM).

Linear RRM
Factor Elements Elements

Gender gi gi0 + gi1Xt + gi2X
2
t

+gi3Ut + gi4U
2
t + gi5Wt + gi6W

2
t

Year hj hj0 + hj1Xt + hj2X
2
t

+hj3Ut + hj4U
2
t + hj5Wt + hj6W

2
t

Contemporary ck ck0zt0 + ck1zt1 + ck2zt2
Group +ck3zt3 + ck4zt4

Animal a` a`0zt0 + a`1zt1 + a`2zt2
Additive +a`3zt3 + a`4zt4

Animal p`0zt0 + p`1zt1 + p`2zt2
PE +p`3zt3 + p`4zt4
Days Xt = t/100, Ut = (t− 20)/100,
on and Wt = (t− 50)/100
Test Ut = 0 if t < 21, and Wt = 0 if t < 51

Legendre ztm for m = 0 to 4
Polynomials

Notice that every fixed and random factor in the linear model has
been expanded to be a regression function of days on test. The fixed
factors are regressions that fit the phenotypic trajectory well, and the
random factors involve Legendre polynomials and attempt to fit the co-
variance functions. The animal permanent environmental effects are not
in the linear model, because that assumes each animal is observed only
once. However, in the RRM, animals are expected to be observed sev-
eral times, and hence there are permanent environmental effects. Every
RRM for any species and trait can be set up in the same manner. The
RRM is about visualizing curves and covariance functions over time. The
observations are changing with time, and the effects of the model also
change with time.
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The curves that fit the trajectory may require more covariates than
those that fit the covariance functions. They do not need to be of the
same order. Computationally, there could be advantages to using the
same order of fit for the fixed and random factors. The important point
is to have a good fit of the trajectories amongst the fixed effects, and an
appropriate order for the Legendre polynomials with the random factors.

Some research has reported different orders of fit of the Legendre
polynomials for each of the random factors. This is not necessary and
can complicate the analysis of the RRM, especially when dealing with
multiple traits. I prefer to use the same order of Legendre polynomials
for all random factors.

2.3 Residuals

Residuals are the difference between predicted observations (using the
estimates of parameters from the RRM) and the actual observations.

ê = ŷ − y.

Now partition the residuals into the 20 time periods as in the classification
model,

ê =



ê1

ê2

ê3
...
ê20

 .

Then estimate the residual variance for the ith time group as

σ2
ei

= ê′iêi/ni,

where ni are the number of observations in the ith time group.

The overall residual covariance matrix, R, is assumed to be diagonal
with 20 different residual variances according to time group. The mixed
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model equations for the RRM therefore involve R−1 which means that
observations are inversely weighted by the magnitude of their residual
variance. Larger residual variances lead to lesser weight in the equations.

The residual variances can be plotted on a graph relative to time
group number. Either a pattern of the residual variances can be observed
and a function used to determine the residual variance for each obser-
vation, or some collapsing of the groups into larger time groups may be
possible. The possibility exists for each of the 20 time group variances to
be different, and thus, one may always have to use 20 different variances.

2.4 Complete Model

2.4.1 Fixed Factors

The fixed factors are for modelling the shape of the phenotypic trajecto-
ries. Let

f ′(t) =
(
t0 t1 t2 · · · tm−1

)
be a vector of covariates of time of length m, these may or may not
be Legendre polynomials depending on the function that best fits the
trajectories, OR

f ′(t) =
(

0 1 0 · · · 0
)

a vector indicating which time group an observation belongs as in the
classification approach (of length m). The desgin matrix for gender ef-
fects, for example, would be written as

Xg =



f ′(t1) 0′

f ′(t2) 0′

0′ f ′(t3)
...

...
0′ f ′(tN)


(

g1

g2

)

where N is the total number of animals observed. The first two animals
belonged to gender 1, the third and the N th animals belonged to gender
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two. Also,

gi =


gi1
gi2

...
gim

 ,
is a vector of length m for each gender which represent the fixed regres-
sion coefficients which give the trajectory of the responses for gender i.
Instead of one number for each gender effect, there will be a vector of m
numbers.

Similarly, the fixed effects of years can be represented as

Wh =



f ′(t1) 0′ 0′ · · · 0′

f ′(t2) 0′ 0′ · · · 0′

0′ f ′(t3) 0′ · · · 0′

...
...

...
. . .

...
0′ 0′ 0′ · · · f ′(tN)





h1

h2

h3
...

hny


where ny is the number of years in the data. If m = 7, for example, and
N = 1000, then X has 1000 rows and 2 ×m = 14 columns. If ny = 10,
then W has 1000 rows and 10×m = 70 columns.

2.4.2 Random Factors

The random factors are for modelling the covariance functions and make
use of Legendre polynomials of order r. The analysis also gives different
curves for every level of each random factor. A curve for each con-
temporary group, for each animal’s genetic effect, and for each animal’s
permanent environmental effect. Let

z′(q) =
(
φ(q)0 φ(q)1 φ(q)2 · · · φ(q)r

)
.

The design matrices are constructed in the same manner as those for the
fixed factors, only using z′(q) rather than f ′(t). Assume that r = 4, for
this discussion. The design matrices are

Zc for contemporary groups,
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Za for animal additive genetic effects, and

Zp for animal permanent environmental effects.

Contemporary groups are groups of animals usually born within a
few days or weeks of each other, which are reared together through much
of their early life, and who are kept together during the time that the
observations were collected. If N = 1000 observations, and the number of
contemporary groups is nc = 50, then Zc has 1000 rows and 5×nc = 250
columns. The covariance function matrix for contemporary groups is Kc

of dimension 5 × 5. Normally, the covariance matrix for contemporary
group effects is Iσ2

c , but in a RRM it is a block diagonal matrix,

V ar(c) = I
⊗

Kc

of dimension 250× 250, where
⊗

is the direct product operation.

The additive relationship matrix, A, is used in all animal models,
and includes ancestors who may not have been observed or measured
in the data itself. The design matrix for animal additive genetic effects
must, therefore, have additional columns of zeros to accommodate the
ancestors. Let nw be the number of animals with observations in the
data, and let na be the total number of animals including ancestors.
Hence, na ≥ nw. The matrix, Za, has 1000 rows, and na × 5 columns.
If na = 200, then Za has 1000 columns. If Ka is the covariance function
matrix for genetic variances, then

V ar(a) = A
⊗

Ka

of dimension 1000× 1000.

The animal permanent environmental (PE) covariance function ma-
trix is Kp. The design matrix, Zp has 1000 rows and nw × 5 columns.
Let nw = 140, then that is 700 columns.

V ar(p) = I
⊗

Kp

of dimension 700× 700.

The assumption is that there are no covariances between levels of
different random factors, e.g. between contemporary groups and animal
additive genetic effects.



44 CHAPTER 2. THE MODELS

The residual matrix, R was shown to be diagonal, but with different
residual variances depending on the day on test.

2.4.3 Mixed Model Equations

Once a model is specified, then Henderson’s best linear unbiased predic-
tion methodology is employed. This requires constructing and solving
the Mixed Model Equations(MME). These equations are


X′R−1X X′R−1W X′R−1Zc X′R−1Za X′R−1Zp

W′R−1X W′R−1W W′R−1Zc W′R−1Za W′R−1Zp

Z′cR
−1X Z′cR

−1W Z′cR
−1Zc + I

⊗
K−1

c Z′cR
−1Za Z′cR

−1Zp

Z′aR
−1X Z′aR

−1W Z′aR
−1Zc Z′aR

−1Za + A−1
⊗

K−1
a Z′aR

−1Zp

Z′pR
−1X Z′pR

−1W Z′pR
−1Zc Z′pR

−1Za Z′pR
−1Zp + I

⊗
K−1

p



·


ĝ

ĥ

ĉ

â

p̂

 =


X′R−1y
W′R−1y
Z′cR

−1y
Z′aR

−1y
Z′pR

−1y

 .

These equations are solved by using iteration on data routines (Chap-
ter 7), in which coefficients of the MME are calculated as they are needed.
The following procedure describes how to estimate the covariance func-
tion matrices using a pseudo-Bayesian method.

1. First, go through the observations, one at a time, and calculate
deviations,

y −Xĝ −Wĥ− Zcĉ− Zaâ− Zpp̂

2. Accumulate the deviations for gender effects, then solve for new
gender regression coefficients.

3. Repeat for year effects.

4. Repeat for contemporary groups. For each contemporary group
calculate

ĉiĉ
′
i
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and accumulate these 5× 5 matrices over all contemporary groups.
Then

K̂c =
∑
i

ĉiĉ
′
i/χ

2(nc + 2)

to estimate the covariance function matrix, where χ2(s) is a random
Chi-square variate having s degrees of freedom.

5. Repeat for animal additive genetic effects. This step involves ele-
ments of A−1. For each animal that has observations, calculate

m` = â` − 0.5(âsire + âdam)

From A−1 there will be bii = (0.5− 0.25(Fsire + Fdam))−1 for each
animal. The new covariance function matrix is

K̂a =
∑
i

mm′bii/χ
2(nw + 2).

Only animals with records are used because they are the only ones
who contribute to the estimation of variances and covariances di-
rectly.

6. Repeat for animal permanent environmental effects. Kp is esti-
mated in the same manner as that for contemporary groups.

7. Estimate new residual variances as before.

8. The new covariance function matrices are used in the next iteration,
and should be saved in a file so that they may be averaged to give
a final estimate of each.

9. Go back to step 1 and repeat.
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Chapter 3

RRM Calculations

This chapter is about the calculations necessary to apply a random re-
gression model. The R language is used to illustrate, but R is only useful
for small examples. To analyze millions of records one would need to
write programs in either Fortran or C++ (Chapter 7).

Below are completely fictitious data on six animals for resistance to a
bacteria during the first 25 days of spring (Table 3.1), and the pedigree of
those six animals (Table 3.2). All data were from one year, so year effects
were removed from the previous model. There were two contemporary
groups.

Table 3.1
Example Data for Resistance to Bacteria

in the first 25 days of spring.
Animal Gender CG Day,Resistance

7 1 1 4,38 7,37 16,35 25,27
8 2 1 2,40 11,40 21,28
9 2 1 6,42 17,37 25,22
10 2 2 5,39 15,36 19,33 24,25
11 1 2 3,41 14,38 22,23
12 1 2 4,37 9,35 17,30 23,24

47
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Table 3.2
Pedigree of Example Animals.

Animal Sire Dam bii
1 - - 1.0
2 - - 1.0
3 - - 1.0
4 - - 1.0
5 - - 1.0
6 - - 1.0
7 1 4 0.5
8 2 4 0.5
9 3 5 0.5
10 1 5 0.5
11 2 6 0.5
12 3 6 0.5

3.1 Data Prep

y = c(38,37,35,27,40,40,28,42,37,22,39,36,33,

25,41,38,23,37,35,30,24)

days=c(4,7,16,25,2,11,21,6,17,25,5,15,19,24,

3,14,22,4,9,17,23)

dgrp=c(1,2,4,5, 1,3,5, 2, 4, 5,1, 3, 4, 5,1,

3, 5,1,2,4,5)

# Animals with records

anw = c(7,7,7,7,8,8,8,9,9,9,10,10,10,10,11,11,

11,12,12,12,12)

# Gender codes for each observation

gend = c(1,1,1,1,2,2,2,2,2,2,2,2,2,2,1,1,1,1,

1,1,1)

# Contemporary group levels

cg = c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,

2,2)

# Sires and dams of all animals (first 6 are unknown)

sirs=c(0,0,0,0,0,0,1,2,3,1,2,3)

dams=c(0,0,0,0,0,0,4,4,5,5,6,6)
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# bii values = 0.5 - 0.25*(Fsire + Fdam)

bii=c(1,1,1,1,1,1,.5,.5,.5,.5,.5,.5)

# Initial residual variances

vare=c(1,1,1,1,1,.97,.97,.97,.97,.97,.95,.95,.95,.95,.95,

.93,.93,.93,.93,.93,.90,.90,.90,.90,.90)

length(y)

length(days) # check that lengths are the same

3.2 Covariates for Fixed and Random Re-

gressions

Because the example data covers the first 25 days of the test period,
the curve that fits the trajectory is a simple quadratic function. The
assumption is that a Legendre polynomial of order 2 will fit the random
regressions.

For the fixed curves functions of days are used, but days are di-
vided by 100 so that time is a decimal number. Otherwise the covariates
when squared could become large numbers, especially when accumulated
over many animals. The primary reason for dividing by 100 is to avoid
rounding problems with large datasets. Legendre polynomials are already
decimal numbers.

# divide days by 100 to reduce magnitude

alld=c(1:25)/100

all2=alld*alld

alle=alld*0 + 1

fT=cbind(alle,alld,all2)

# Legendre polynomials

LAM=LPOLY(3)

LAM

ti=c(1:25)

tmin=1

tmax=100 # you could also use 25, in this case

qi = 2*(ti - tmin)/(tmax - tmin) - 1

qi
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x1=qi

x0=x1*0 + 1

x2=x1*x1

M=cbind(x0,x1,x2)

PH = M %*% t(LAM)

PH

3.3 Design Matrices for Model

Each of the design matrices for the factors in the model, i.e. gender
effects, contemporary groups, animal additive genetic, and animal per-
manent environmental effects, needs to be created. A simple function
was written to create these matrices, making use of fT and PH created
in the previous subsection.

rdesgn = function(v,tim,fT,nc,no){

if(is.numeric(v)){

va = v

mrow = length(va)

mcol = max(va)

if(nc > mcol)mcol = nc }

if(is.character(v)){

vf = factor(v)

va = as.numeric(vf)

mrow = length(v)

mcol = length(levels(vf))

if(nc > mcol)mcol = nc }

mcc = mcol*no

X = matrix(data=c(0),nrow=mrow,ncol=mcc)

for(i in 1:mrow){

ic = (va[i]-1)*no

jc = c((ic+1):(ic+no))

X[i,jc] = fT[tim[i], ] }

return(X) }

# design matrix for gender effects
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Xg=rdesgn(gend,days,fT,2,3)

Xg

# design matrix for random factors using

# Legendre polynomials in PH

Zc=rdesgn(cg,days,PH,2,3)

Za=rdesgn(anw,days,PH,12,3)

Zp=Za[ ,c(19:36)] # PE design matrix is a

# subset of design matrix for genetic

# Check the dimensions of the matrices

3.4 Initial Covariance Matrices

If this were a new experiment, then we would not have any covariance
function matrices, or residual matrices to start a mixed model analysis.
We also need to construct the inverse of the additive relationship matrix.
Some parameters were chosen arbitrarily to illustrate the calculations of
the example. The example data are not sufficiently numerous with which
to obtain adequate estimates of the parameters.

# Routine to set up inverse of additive relationship

# matrix from list of sires and dams and bii-values

AINV = function(sid,did,bi){

# IDs assumed to be consecutively numbered, and

# parents come before progeny

rules=matrix(data=c(1,-0.5,-0.5,

-0.5,0.25,0.25,

-0.5,0.25,0.25),

byrow=TRUE,nrow=3)

nam = length(sid)

np = nam + 1

ss = sid + 1

dd = did + 1

LAI = matrix(data=c(0),nrow=np,ncol=np)

for(i in 1:nam){

ip = i + 1

X = 1/bi[i]
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k = cbind(ip,ss[i],dd[i])

LAI[k,k] = LAI[k,k] + rules*X

}

k = c(2:np)

C = LAI[k,k]

return(C) }

AI = AINV(sirs,dams,bii)

# AI is 12 by 12 for the example

Begin with the following matrices, which may come from the liter-
ature or from other creative means. With a much larger data set, then
we could estimate more legitimate covariance matrices.

Kc = matrix(data=c(.51696, -.1623, -.0895,

-.1623, .3504, .1135,

-.0895, .1135, 1.20888),byrow=TRUE,ncol=3)

> Kc

[,1] [,2] [,3]

[1,] 0.51696 -0.1623 -0.08950

[2,] -0.16230 0.3504 0.11350

[3,] -0.08950 0.1135 1.20888

Ka = matrix(data=c(.0522, -.00170,-.00142,

-.00170,.0350,-.00149,

-.00142,-.00149,.121),byrow=TRUE,ncol=3)

> Ka

[,1] [,2] [,3]

[1,] 0.05220 -0.00170 -0.00142

[2,] -0.00170 0.03500 -0.00149

[3,] -0.00142 -0.00149 0.12100

Kp = matrix(data=c(.06,-.00635,.003753,

-.00635,.04,-.00106,

.003753,-.00106,.15),byrow=TRUE,ncol=3)

> Kp

[,1] [,2] [,3]
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[1,] 0.060000 -0.00635 0.003753

[2,] -0.006350 0.04000 -0.001060

[3,] 0.003753 -0.00106 0.150000

# Invert the covariance matrices

Kci=ginv(Kc)

Kai=ginv(Ka)

Kpi=ginv(Kp)

# Residual variances

R = diag(vare[days])

RI=ginv(R)

# Set up covariance matrices for each factor

# Contemporary groups (2 of them

C=id(2)

CI = C %x% Kci # direct product, order 6 x 6

# Additive genetic (12 animals

dim(AI)

GI = AI %x% Kai # order 36 x 36

# Permanent Environmental

P=id(6)

PI = P %x% Kpi # order 18 x 18

W = cbind(Zc,Za,Zp)

X = Xg

HI=block(CI,GI,PI)

# Uses block function, or direct sum

3.5 Mixed Model Equations

Another R function was made to construct the mixed model equations of
Henderson, using the previously created design matrices and covariance
matrices. The function is as follows.

# Function to form MME

MME = function(X,Z,GI,RI,y){
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XX = t(X) %*% RI %*% X

XZ = t(X) %*% RI %*% Z

ZZ = t(Z) %*% RI %*% Z

Xy = t(X) %*% RI %*% y

Zy = t(Z) %*% RI %*% y

N = length(y)

R1 = cbind(XX,XZ)

R2 = cbind(t(XZ),(ZZ+GI))

LHS = rbind(R1,R2)

RHS = rbind(Xy,Zy)

# now solve

C = ginv(LHS)

bhat = C %*% RHS

# estimate residual variance

SSR = t(bhat) %*% RHS

VPE = diag(C)

sep = matrix(data=VPE,ncol=1)

return(list(LHS=LHS,RHS=RHS,SSR=SSR,C=C,

VPE=sep,SOLNS=bhat)) }

Below are the statements to create and solve the MME, and then to
separate the solutions by factor. Remember there will be 3 solutions for
each gender (the fixed curves or trajectories), and for each contemporary
group, and each animal (genetic and PE).

SA = MME(Xg,W,HI,RI,y)

bh = SA$SOLNS

ghat = bh[c(1:6),]

chat = bh[c(7:12),]

ahat = bh[c(13:48),]

phat = bh[c(49:66),]

# must reformat the solutions

gh = matrix(data=ghat,byrow=TRUE,ncol=3)

> gh # GENDER EFFECTS

[,1] [,2] [,3]

[1,] 38.48489 13.58843 -296.4775

[2,] 37.97264 82.02404 -583.2681
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ch = matrix(data=chat,byrow=TRUE,ncol=3)

> ch # CONTEMPORARY GROUP EFFECTS

[,1] [,2] [,3]

[1,] 0.6131888 -0.4489996 -0.5207769

[2,] -0.6131888 0.4489996 0.5207769

ah = matrix(data=ahat,byrow=TRUE,ncol=3)

> ah # ANIMAL ADDITIVE GENETIC

[,1] [,2] [,3]

[1,] 0.077419331 -0.029556261 -0.19075749

[2,] -0.025356727 -0.010108294 0.22883726

[3,] -0.052062604 0.039664554 -0.03807977

[4,] 0.009288360 0.004802451 -0.08615141

[5,] 0.041504861 -0.026617064 -0.01809211

[6,] -0.050793221 0.021814613 0.10424352

[7,] 0.094147066 -0.034191518 -0.24269798

[8,] -0.049539044 0.023964143 0.08943504

[9,] 0.009599878 -0.012351672 0.04033591

[10,] 0.086088207 -0.035828310 -0.19093877

[11,] -0.021926840 -0.030872198 0.37728555

[12,] -0.118369267 0.089279555 -0.07341975

ph = matrix(data=phat,byrow=TRUE,ncol=3)

> ph # ANIMAL PERMANENT ENVIRONMENTAL

# corresponding to animals 7 through 12

[,1] [,2] [,3]

[1,] 0.11292716 -0.05915988 -0.2491713

[2,] -0.10021776 0.06779429 0.0375444

[3,] 0.04467334 -0.04492373 0.1719830

[4,] 0.05554442 -0.02287056 -0.2095274

[5,] 0.06423224 -0.08458156 0.5245844

[6,] -0.17715940 0.14374144 -0.2754131

With the solutions we can look at the phenotypic trajectories for the
two genders, in Figure 3.1 below.
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Figure 3.1
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There is definitely a difference in phenotypic curves between the two
genders. The plot was made, as follows.

gsoln = gh%*%t(fT) # points along 25 days

gs1 = gsoln[1,]

gs2 = gsoln[2,]

par(bg="cornsilk")

plot(gs2,col="blue",lwd=5,type="l",xlab="Days on Test",

ylab="Resistance Level")

title(main="Gender Trajectories")

lines(gs1,col="red",lwd=5)

Similarly for contemporary groups, a plot is made only using Legen-
dre polynomials.
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Figure 3.2
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Note that the solutions for contemporary groups must add to zero,
thus, the mirror image in their curves. The next two figures show the
curves for animal additive genetic and permanent environmental effects,
but only for the animals with records (i.e. animals 7 through 12).

Figure 3.3
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Figure 3.4
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Looking at the curves for the animal genetic effects, for example,
determining the best animal is difficult. Below are the estimated breeding
values (EBV) for the animals with records for day 5 of the test and day
20.

Table 3.3
EBV for resistance for animals 7 to 12.

Animal Day 5 Day 20
7 -0.18940620 0.06571111
8 0.04650564 -0.04328822
9 0.06963370 0.02054059
10 -0.13046155 0.06693418
11 0.47701849 0.04924207
12 -0.27329008 -0.15913973

Assuming high values are good, then animal 11 would be the better
animal at day 5 and animals 10 and 7 would be better at day 20. Having
a higher value at day 20 means the animal’s resistance is not decreasing
as much during the low part of the 100 day trajectory, and this may be
a good thing. Having animals whose resistance is decreasing much more
rapidly at day 20 may not be ideal for the animal.
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Thus, one has to decide how best to present the results of curves. It
may be one point on the curve, or it could be the area under the curve,
or it could be one of the curve parameters that summarizes everything.
Each situation or problem is different. The choice must also be readily
explainable to producers who may not understand curves and regressions.
Producers usually want numbers that are interpretted on their day to day
level, such as kilograms of weight, or kilograms of milk yield.

3.6 Estimation of Covariance Matrices

The example data are not suitable for estimating covariance matrices
due to the small number of observations (21) and animals (12). How-
ever, it is useful to illustrate the calculations that would be necessary.
The procedure is a pseudo-Bayesian method, where sums of squares of
solutions to the MME are calculated and assumed to follow an inverted
Wishart distribution, or an inverted Chi-square distribution. The solu-
tions themselves are assumed to follow normal distributions and random
noise would be added to solutions during each sample. Many samples
would be generated, i.e. 50,000 or more. Allowing for a suitable “burn-
in” period, then the remaining samples would be averaged. This section
describes one sampling for the covariance matrices.

3.6.1 Contemporary Group Matrix

For the contemporary group covariance matrix, calculate the sum of
squares and crossproducts of the 3 solutions per contemporary group
(there should really be more than 3 contemporary groups for this to
work properly, because the new Kc has a rank of only 2). Instead of an
inverted Wishart distribution, the whole matrix was divided by a random
Chi-square variate with 4 degrees of freedom (number of contemporary
groups plus 2). Hence the reason this is called a pseudo-Bayesian ap-
proach.

pchi=rchisq(1,4)
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# pchi=5.14983

Kc =t(ch)%*%ch/pchi

Kc

[,1] [,2] [,3]

[1,] 0.1460244 -0.10692449 -0.12401750

[2,] -0.1069245 0.07829408 0.09081022

[3,] -0.1240175 0.09081022 0.10532719

3.6.2 Additive Genetic Matrix

The sum of squares and crossproducts for the additive genetic covari-
ance matrix involves the inverse of the additive relationship matrix (AI).
Again, a random Chi-square variable with number of animals plus 2 de-
grees of freedom (rather than a Wishart distribution).

pchi=rchisq(1,14)

# pchi=10.42511

Ka =t(ah)%*%AI%*%ah/pchi

Ka

[,1] [,2] [,3]

[1,] 0.003231216 -0.001984457 -0.001825579

[2,] -0.001984457 0.001583572 -0.001872834

[3,] -0.001825579 -0.001872834 0.025616399

3.6.3 Permanent Environmental Matrix

The calculations are similar to those for the contemporary groups. The
degrees of freedom are the number of animals with records plus 2.

pchi=rchisq(1,8)

# pchi = 8.717388

Kp =t(ph)%*%ph/pchi

Kp

[,1] [,2] [,3]

[1,] 0.007271474 -0.005466108 0.005349242
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[2,] -0.005466108 0.004411046 -0.007984768

[3,] 0.005349242 -0.007984768 0.055982019

3.6.4 Residual Variances

One can calculate an overall residual variance for fitting the entire model.

T = cbind(Xg,W)

res = y - T%*%bh # residuals

sse = sum(res*res)

sse/19

2.609571 # overall variance

In setting up the MME, we used 5 different residual variances de-
pending on the day on test. Thus, there were five groups of five days
each.

Q = desgn(dgrp,5)

idual=Q*cbind(res,res,res,res,res)

D = t(Q)%*%Q

DI = ginv(D)

ee = t(idual)%*%idual

RR=ee*DI

RR

[,1] [,2] [,3] [,4] [,5]

[1,] 0.5812101 0.0000000 0.000000 0.000000 0.000000

[2,] 0.0000000 0.9033761 0.000000 0.000000 0.000000

[3,] 0.0000000 0.0000000 4.025413 0.000000 0.000000

[4,] 0.0000000 0.0000000 0.000000 1.315003 0.000000

[5,] 0.0000000 0.0000000 0.000000 0.000000 4.438237

3.6.5 Heritabilities

Legendre polynomials of order 2 were used in the example, and we can
calculate the heritability of each regression coefficient. Assuming the
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estimates above are the converged final estimates (which they are not),
the heritability of the intercept is

h2 = .00323/(.00323 + 0.00727 + .14602 + 2.60957)

= .00117.

We may also do the slope and the quadratic coefficients in the same
way. For the slope, the heritability was

h2 = .00158/(.00158 + .07829 + .00441 + 2.60957)

= .00059,

and for the quadratic term was

h2 = .02562/(.02562 + .10533 + .05598 + 2.60957)

= .00916.

Individually, the parameters are not very heritable. However, this
is probably the best way to look at heritability in a random regression
model. Unfortunately, many researchers want to use the random re-
gression results to estimate variances for every day in the test period,
and thereby estimate daily heritabilities. The first thing is to calculate
matrices of dimension 25 by 25 for contemporary group, genetic, and
permanent environmental variances and covariances as predicted by the
covariance functions, as follows.

# CONTEMPORARY GROUPS

varc = PH%*%Kc%*%t(PH)

vc = diag(varc) # 25 variances, each day

# ADDITIVE GENETIC

vara = PH%*%Ka%*%t(PH)

va = diag(vara) # 25 variances, each day
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# PERMANENT ENVIRONMENTAL

varp = PH%*%Kp%*%t(PH)

vp = diag(varp) # 25 variances, each day

# combine into one table

vtab = cbind(vc,va,vp)

# RESIDUAL VARIANCES

vres = diag(RR) # from earlier section

v1=vres[1]

v2=vres[2]

v3=vres[3]

v4=vres[4]

v5=vres[5]

R = c(v1,v1,v1,v1,v1, v2,v2,v2,v2,v2,

v3,v3,v3,v3,v3,

v4,v4,v4,v4,v4, v5,v5,v5,v5,v5)

vtt = cbind(vtab,R)

# total sum of individual variances by day

pvar = vtt[ ,1]+vtt[ ,2]+vtt[ ,3]+vtt[ ,4]

D=diag(pvar)

DI=ginv(D)

# Convert absolute values to percentages of pvar

HH=DI%*%vtt

Hc = HH[ ,1] # contemporary group

Ha = HH[ ,2]

Hp = HH[ ,3]

Hr = HH[ ,4]

par(bg="oldlace")

plot(Hc,type="l",lwd=3,col="red",xlab="Days on Test",

ylab="Percentage of Variance",ylim=c(0,1))

title(main="Percentage of Variance over Days")

lines(Ha,lwd=3,col="blue")

lines(Hp,lwd=3,col="cyan")

lines(Hr,lwd=3,col="magenta")

Plotting the daily percentage values over the 25 day test period shows
how variation changes over time. The additive genetic and permanent
environmental decrease over time and are small throughout. Contempo-
rary group variance is relatively much higher. I caution the reader again,
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to remember that the estimates obtained here for this small example
are not totally converged, and they are quite meaningless. There should
be many thousands of animals and observations in order to obtain any
appropriate estimates.

Figure 3.5
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The distinct dips and hikes are due to the residual variances changing
substantially from one group to the next (the magenta line in Figure 3.5).
Again, there were not sufficient data to obtain good smooth estimates of
residual variances.



Chapter 4

Lactation Production

When a female dairy animal gives birth this begins her lactation period.
In an average dairy cow, the lactation period runs for 305 days. The
amount of milk produced is greatest after calving and peaks about 40
days with daily production decreasing thereafter. Around 100 to 120
days after calving, the cow is impregnated again through artificial in-
semination, and the growth of the new fetus begins to pull lactation
production downwards even more. About 60 days before the cow is due
to give birth again, she is stopped from milking (if she has not already
stopped on her own) and dried off. The whole process is repeated as soon
as she has the next calf, approximately 13 month intervals.

Some cows have their peak production right at birth of a calf and it
decreases continually thereafter. Other cows continue to increase in yield
from birth to day 90, before starting to decrease. Another group of cows
gives milk at a continuous level for many days. Some cows stop milking
around 280 days, while others are kept milking to 365 days or more.
Thus, there are many different shapes of daily production trajectories
between cows.

Besides milk yield, there are also components of milk, i.e. percent-
ages of fat, protein, and lactose, somatic cell scores, milk urea nitrogen,
and betahydroxybutylase. All of these have their own interrelated tra-
jectories over the lactation period. Consequently, multiple trait analyses
are favoured to make use of genetic correlations among the traits. Luck-

65
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ily, the same model equation is generally assumed for all of these traits.
That is, the same factors are assumed to influence each lactation trait.

4.1 Measuring Yields

In the early days of milk recording in Canada, the federal government
would record the daily milk yield of every cow in the herd. The trait that
was analyzed was called the 305-day yield. This was the sum of the daily
yields of cows from day 5 to 305 in the lactation period (or whenever
the cow stopped milking). Daily yields were defined as the amount of
milk given in a 24 hour period. This was usually two milkings per day,
morning or AM milking, and evening or PM milking.

However, it was very costly in terms of people time to measure the
amount of milk per cow every day, and someone had to add up the milk
weights over the lactation period. The program ended before 1970.

At the same time there was a program of supervised testing, in which
a milk supervisor would visit a farm, at approximately one month inter-
vals. He would measure yields in the PM and following AM, and collect
milk samples of each cow, which were sent to laboratories to be analyzed
for fat content. The data were accumulated by the milk recording pro-
gram, which was called Record of Performance (ROP). Later, provincial
programs arose called Dairy Herd Improvement (DHI) programs. The
monthly milk weights were combined using the Test Interval Method
(TIM), which estimated the amount of milk produced between two visits
by linear interpolation. There were tables of special factors to adjust
the first test day (TD) visit, and another table for projecting the yield
after the latest TD visit to 305-days. Both tables were based on the
assumption of a standard or average lactation trajectory. There was no
allowance for the fact that cows could vary drastically in their trajecto-
ries. The factors worked well for most cows, but gave biased results for
cows with atypical trajectories.

A dairy technical committee existed in Canada, run by Agricul-
ture Canada and composed of scientists from different universities across
Canada. The purpose of the committee was to advise the ROP program
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on the best statistical procedures to adjust milk yields and to evaluate
dairy bulls. The committee met twice a year in various locations across
Canada. During one of these meetings when it was time to develop new
tables of factors for adjusting the first TD yields and the latest TD yields
to get 305-day production, there was debate over who would do this and
how often it needed to be done. Dr John Moxley, who worked for the
Quebec DHI equivalent, DHAS at the time, made a remark in 1974 that
“it would be better if we could analyze TD milk yields directly rather
than combining them into a 305-d yield.” In 1974, however, we were still
trying to get a linear sire model adopted to evaluate dairy bulls, so the
computing power of the day was not capable of handling models for test
day records. However, the idea of a linear model for test day yields was
planted solidly in my head that day. I thought about it all the time. By
1990 the dairy world had advanced to using animal models, and com-
puter hardware had caught up, so that it was feasible to begin working
on TD models.

My first TD model did not have any curves in it. The model assumed
that the trajectories of the curves were the same for all cows. Trajectories
only differed by the height at peak yield. Thus, there was still only one
variable to estimate per animal. The problem with analyzing TD records
was that each cow had 7 to 10 TD records compared to only one 305-d
record. There was much more data to process.

Jack Dekkers said to me one day, “there should be a different lacta-
tion curve for every cow” to which I readily agreed. Then I thought of
the problem of estimating a curve for each cow, and how I could build in
the additive genetic relationships. Then Jack said “random regressions”
as a passing thought, regressions but they would be a random factor in
the model. I immediately knew that was the “obvious” solution. I looked
through Dr Henderson’s 1984 book that same day, and was astounded to
find a section on the topic of “random regressions.” Unfortunately, there
was only one paragraph and nothing about use with TD models. Hender-
son’s son published a paper in Biometrics in 1982 on random regression
models and the analysis of covariance.

Working with Ewa Ptak of Poland we tried different TD models. In
1994 I presented the idea of TD models using random regression mod-
els to the WCGALP meetings in Guelph. Four years later, everyone
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was studying random regression models for many situations. By 2000,
Canada had adopted a TD model for its genetic evaluations of dairy bulls
and cows.

4.2 Curve Fitting

A host of different models have been used to fit lactation curves in dif-
ferent species of dairy cattle. Kistemaker (1996) compared almost 20
different models that had been studied in the literature previously. His
results are shown in Table 4.1.

Table 4.1
Correlations (r) between Predicted and Actual

Test Day Yields and Mean Absolute Error (MAE)
when applied to 5409 cows with at least 9 TD yields.

No. Model1 r MAE

1 ln(y/t) = a+ bṫ .717 4.780
2 ln(y) = a+ b · ln(t) + c · t .951 1.290
3 ln(y) = a+ b · ln(t) + c · t+ d · t.5 .963 1.084
4 ln(y) = a+ b · ln(t) + c · t+ d · t2 .964 1.079
5 ln(y) = a+ b · t−1 + c · t+ d · t2 .964 1.063
6 ln(y) = a+ b · ln(t) + c · t ∗ d · t.5 + f · t2 .973 0.888

7 1/y = a+ b · t−1 + c · t .102 2.050
8 1/y = a+ b · t−1 + c · t+ d · t2 .766 1.269
9 1/y = a+ b · t−1 + c · t+ d · t2 + f · t3 .378 1.078

10 y = a .646 3.466
11 y = a+ b · t+ c exp(−.5(log(t)− 1)/.6)2 · t−1 .953 1.229
12 y = a+ b · t.5 + c ln(t) .955 1.230
13 y = a+ b · t+ c exp(−.05 · t) .953 1.232
14 y = a+ b · t.5 + c ln(t) + d · t4 .967 1.032

15 y = a+ b(t/305) + c(t/305)2 + d ln(305/t) + f ln2(305/t) .975 0.857
16 y = a+ b · t+ c sin(.01)t2 + d sin(.01)t3 + f exp(−.055t) .974 0.878
17 y = a+ b · t+ c · t2 + d · t3 + f ln(t) .975 0.864
18 y = a+ b · t+ c · t2 + d · t3 + f · t4 .974 0.905
19 y = a+ b · t+ c · t2 + d · t3 + f · t4 + g · t5 + h · t6 .987 0.581

Wood’s model (1967) has been used to study groups of cows and
is equation 2 in the table. Equation 13 is known as Wilmink’s function
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(1987) which has been applied in many studies. Equation 15 is known
as the Ali and Schaeffer function (1987), which gives the second smallest
mean absolute error and the second largest correlation. Equation 19
appears to be the best, but has the most parameters to be estimated.
The first 9 equations use the natural log of the test day yields or the
inverse of yield. Equations 10 through 19 use the actual TD yields.

As you increase the number of covariates in the model, the better is
the fit of the model, in general. Subsequent work showed that Legendre
polynomials of order 4 were similar to the Ali and Schaeffer function,
but had the advantage of having much lower correlations among the
parameter estimates. Thus, Legendre polynomials of order 4 have been
used for both fixed and random regressions in test day models in Canada.

A classification approach could be used for the fixed factor regres-
sions for at least one of the fixed factors. There have probably been a
hundred different studies that investigated the best curve function for
fitting lactation curves in dairy cows, dairy goats, dairy sheep, and water
buffalos. The conclusions have not been unanimous, depending on the
amount of data in the analyses. The majority of studies found test day
models gave higher correlations of estimated breeding values with true
breeding values, and recommended their use for genetic evaluations of
lactation production.

4.3 Factors in a Model

4.3.1 Observations

A multiple trait model will be described. Traits will be defined within
parity number. Parities one and two are separate, and parity three in-
cludes third parity and all subsequent parities. The assumption is that
cows in third parity or later are mature and the shape of their curves
are similar. In some cases parity two might also be considered mature.
No matter what, there are definite shape differences between parity 1
heifers and all later parities. In some situations it might be better to
limit analyses to the first three parities only.
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After parity number come several traits, depending on the coun-
try. These include milk yield, fat yield, protein yield, lactose yield, and
somatic cell scores (SCS). There could also be milk urea nitrogen and
betahydroxybutylase. Finally there could be fatty acid components. De-
ciding which factors to analyze depends on how many cows have data.
In the United States of America, for example, there are too many cows
and too many test days, such that a TD model is impractical to apply,
even for one trait. The initial Canadian Test Day Model had the first
three parities, and milk, fat, and protein yields plus SCS or a total of 12
traits.

4.3.2 Year-Month of Calving

In all animal models it is critically important to account for time trends
in phenotypes. For lactation production this means putting in a factor
for the year and month of calving. If data begin in 1986, then that means
30 years (it is now 2016), times 12 months per year, gives 360 levels or 360
different lactation curves for one parity. Then assume 72 five-day periods
within each lactation and that gives 25,920 parameters to be estimated
using the classification approach. Hopefully, there are many more test
day records with which to estimate those parameters. If there are not,
then maybe 36 ten-day periods could be used. If data are limiting, then
Legendre polynomials of order 4 could be used, i.e. 1800 parameters to
estimate.

4.3.3 Age-Season of Calving

Age at calving (parturition) is known to have a significant effect on milk
production, as does month of calving. However, month of calving has
already been considered in the Year-Month of Calving effects. However,
there is an interaction of month of calving with age at calving. To avoid
some confounding, months can be combined into seasons either six or
four seasons per year. These can be formed on the basis of phenotypic
averages, so that consecutive months that are similar in yield levels can
be grouped together.
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Age groups would differ depending on the parity number, and there
could be different numbers of age groups per parity. First parity heifers
start calving at 18 months of age, and can extend to 30 months. Again,
if there are lots of data, then 13 age groups by 6 seasons would only be
78 subclasses in parity one. Later parities extend over a much wider age
range, and thus, some groupings of ages may be necessary too. Legendre
polynomials would be used for this factor.

If the data cover several decades, then age-season differences could
change over time as production increases. Thus, time periods of 5 to 10
years should be made and the model expanded to have Time-Age-Season
of Calving subclasses. This allows the age-season differences to change
over time.

4.3.4 Days Pregnant

Once a cow becomes pregnant, part of her feed intake goes towards the
growth of the fetus, and therefore, less energy goes towards milk pro-
duction. Groups of 5 or ten days can be created, perhaps 30 groups
altogether, to measure the decrease in yield. The assumption is that the
decrease in yield is the same regardless of number of days in milk when
the cow becomes pregnant. As the number of days pregnant becomes
larger, so does the amount of decrease in yield. Legendre polynomials of
days in milk would be used within each days pregnant group.

Determining the time of conception is not immediate, and therefore,
test day records need to be continuously updated when pregnancy is
validated. Canada has opted to multiplicatively pre-adjust TD yields for
number of days pregnant rather than to put a factor into the model.

4.3.5 Herd-Test-Day

This is probably the biggest mistake I made with the original TD models.
The purpose of this factor was to account for the environmental effects
on the cows that were tested on the same day. This is very messy because
cows (in the same parity) would have calved at different ages and months



72 CHAPTER 4. LACTATION PRODUCTION

of the year. Thus, some cows would be just starting a lactation, and
other cows (in the same HTD subclass) could be ending their lactation.
Thus, the yields would be all over the place. There would only be one
parameter to estimate for each HTD subclass. The contemporaries would
be constantly changing from TD to TD.

After much thinking about this factor, it did not make any sense to
me. Thus, I DO NOT RECOMMEND this factor in TD models. Instead
one should use Parity-Herd-Year-Season of calving contemporary groups.

4.3.6 Parity-Herd-Year-Season of Calving

The random factor of Parity-Herd-Year-Season of Calving, (PHYS), each
with its own curve (not one parameter but five), should be used to ac-
count for contemporaries. Contemporaries are cows that share the same
environmental effects throughout their lactation, from birth to being
dried off. They encounter the same weather and management variables
through-out. They likely also have the same test days during their lacta-
tions. I also suggest using 4 seasons per year of 3 months each. However,
if number of cows per subclass is small, then maybe larger season groups
(4 months or 6 months) may be necessary in some herds, especially for
the less numerous breeds.

Legendre polynomials of order 4 should be used with this factor, and
hence a covariance function matrix needs to be estimated for it. As a
random factor in the model, it is less critical to have a minimum number
of records per subclass because just one test day record will suffice.

4.3.7 Additive Genetic Effects

Every animal with TD records has both parents identified. If a parent
is unknown, then a phantom parent group is assigned. Ancestors, with-
out TD records, also have unknown parents replaced by phantom parent
groups. The groups are based on year of birth of the animal and whether
it is a male or female animal. Phantom groups represent the four path-
ways of selection, in dairy cattle, and years of birth. Phantom groups
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are necessary in order to properly estimate genetic trends, unbiasedly.

Each animal additive genetic effect is fitted by a Legendre polynomial
of order 4. A covariance function matrix must also be estimated.

4.3.8 Permanent Environmental Effects

Because cows have more than one TD record per lactation, permanent
environmental effects are modeled for each parity by Legendre polyno-
mials of order 4. A covariance matrix is needed for this factor too.

4.3.9 Number Born

The number of offspring born at a parturition, in litter bearing species
such as dairy goats and sheep, can have an effect on the milk yield of
the female. A female carrying four young apparently “knows” this is
happening and the body prepares by increasing the amount of milk that
will be needed after birth to feed that number of young. This is a fixed
environmental effect and might differ depending on parity number of the
dam, but it can be fit by Legendre polynomials of order 4.

4.3.10 Residual Effects

In the Canadian Test Day Model, the lactation is divided into 4 periods of
various numbers of days, such that the residual variance is similar across
days within a period, but different between periods. One should begin
using many groups, perhaps 30 of ten days each, in an initial analysis to
determine the best grouping of days. The point is, the residual variance
changes throughout the lactation.

Table 4.2 contains residual variances for milk yields in the first three
parities for a small subset of Canadian Holstein dairy cattle born from
2005 through 2009.
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Table 4.2
Residual variances for a TD model.

Days in Milk Parity 1 Parity 2 Parity 3
1-45 7.86 13.96 16.42

46-115 5.01 8.12 9.33
116-265 3.95 5.41 6.24
266-365 3.57 4.36 3.60

4.4 Covariance Function Matrices

Many of the early studies of random regression models focussed on the es-
timation of the covariance function matrices, and the subsequent graphs
that could be made. Let ai represent the vector of random regression
coefficients of an animal for parity i. This vector is order 5 by 1 (order 4
Legendre polynomial). Then an analysis of 3 parities gives a covariance
function matrix of order 15 by 15. The parts of this matrix are shown
below in order 5 by 5 subgroups.

V ar(a1) =


8.1910 0.2880 −0.6694 0.2360 −0.1407
0.2880 1.4534 −0.1327 0.4590 0.4926
−0.6694 −0.1327 0.5108 −0.1512 0.0713

0.2360 0.4590 −0.1512 0.1855 −0.0524
−0.1407 0.4926 0.0713 −0.0524 0.0766

 ,

Cov(a1, a2) =


8.3749 0.4892 −0.5377 0.2686 −0.0281
1.486 1.343 −0.1682 −0.0111 −0.0232

−0.7102 0.2314 0.2984 −0.2155 0.0487
0.3355 −0.0659 −0.1044 0.1136 −0.0136
−0.1365 0.0979 0.0705 −0.0456 0.0072

 ,

Cov(a1, a3) =


8.1921 0.8613 −0.5547 0.2076 −0.0466
1.6933 1.1975 −0.2810 0.0614 −0.0956
−0.6192 0.1654 0.2865 −0.1721 0.0372

0.3242 −0.0281 −0.0950 0.1168 −0.0478
−0.1003 0.1086 0.0856 −0.0424 0.0194

 ,
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V ar(a2) =


12.0818 1.6093 −0.6870 0.4367 −0.1217
1.6093 3.0648 0.0456 −0.2809 0.0247
−0.6870 0.0456 0.5917 −0.1626 0.0166

0.4367 −0.2809 −0.1626 0.4004 −0.1092
−0.1217 0.0247 0.0166 −0.1092 0.1696

 ,

Cov(a2, a3) =


11.4893 1.9730 −0.9016 0.4398 −0.2730
1.8533 2.7023 −0.1320 −0.2323 −0.0117
−0.6313 −0.0365 0.2919 −0.2010 0.8696

0.2867 −0.2212 −0.1646 0.2461 −0.0805
−0.0897 0.0631 0.0654 −0.0579 0.0185

 ,

and

V ar(a3) =


13.5971 1.7354 −0.8951 0.3615 −0.3546
1.7354 3.8151 −0.2634 −0.1821 0.0662
−0.8951 −0.2634 0.9197 −0.2324 0.0873

0.3615 −0.1821 −0.2324 0.5535 −0.1615
−0.3546 0.0662 0.0873 −0.1615 0.2291

 .

A plot of the genetic variances within parities and across the lacta-
tion period can be obtained as shown below.

# Legendre polynomials

LAM=LPOLY(5)

ti=c(5:365)

tmin=5

tmax=365

qi = 2*(ti - tmin)/(tmax - tmin) - 1

x=qi

x0=x*0 + 1

x2=x*x

x3=x2*x

x4=x3*x

M=cbind(x0,x,x2,x3,x4)
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PH = M %*% t(LAM)

Ka1 = matrix(data=c(8.1910, 0.2880,-0.6694,0.2360, -0.1407,

0.2880, 1.4534, -0.1327, 0.4590, 0.4926,

-0.6694, -0.1327, 0.5108, -0.1512, 0.0713,

0.2360, 0.4590, -0.1512, 0.1855, -0.0524,

-0.1407, 0.4926, 0.0713, -0.0524, 0.0766),byrow=TRUE,ncol=5)

Va1 = PH%*%Ka1%*%t(PH) # order 361 x 361

vg1 = diag(Va1)

# similar arrays for vg2, vg3, Ka2, Ka3 (not shown)

par(bg="cornsilk")

plot(vg1,col="blue",lwd=5,type="l",axes=FALSE,xlab="Days on Test",

ylab="Genetic Variance",ylim=c(4,16))

axis(1,days)

axis(2)

title(main="Genetic Variances")

lines(vg2,col="red",lwd=5)

lines(vg3,col="darkgreen",lwd=5)

points(55,15,pch=0,col="blue",lwd=3)

text(55,15,"First Parity",col="blue",pos=4)

points(55,14,pch=0,col="red",lwd=3)

text(55,14,"Second Parity",col="red",pos=4)

points(55,13,pch=0,col="darkgreen",lwd=3)

text(55,13,"Third Parity",col="darkgreen",pos=4)

The plot is shown in Figure 4.1. An obvious observation is that
there are distinct differences in the variance curves across the lactation
between parities. Also, the genetic variance is highest at the beginning
of lactation and at the end of lactation, for each parity. This implies that
there are great differences between cows in the amount of milk produced
at the start of lactation, then after 55 days the variances are smaller by
nearly half, but tend to increase upwards again towards day 365.

Some researchers have interpretted the high variances at the start
and end of tests as artifacts of the Legendre polynomials. However, sim-
ilar shapes are obtained using other polynomials (e.g. Ali and Schaeffer,
1987) of order 4. Spline functions tend to flatten the beginning and end
a little more, but the general shape persists.
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Figure 4.1
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The only way to determine the correct shape of the variances is
to use a multiple trait model where yields are divided into 36 ten-day
periods, then genetic variances may be estimated for each period, and
also covariances between periods. Then a Legendre polynomial of order
4 could be fit to the 36 by 36 covariance matrix, and compared to the
estimates from the test-day model.

My opinion is that the shape of these variance curves is not impor-
tant, but rather the entirety of the results which includes the estimated
breeding values. The residual variances are greatly reduced. The vari-
ances that need to be correct are Cov(ai, aj) for all pairs of parities.

4.5 Expression of EBVs

Estimated breeding values (EBV) in random regression models, come in
vectors of length equal to the order of the Legendre polynomials. The
problem was how to condense 5 breeding values for a curve into one value
for a single trait, like milk yield. Dairy cattle producers were used to a
standard called “305-day yields”. The solution was to calculate the daily
milk yield per day of lactation, and then to sum those daily yields from
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day 5 through 305. (The first 4 days of yield were typically used to feed
the newborn calf and provide its colostrum, or immunization.) Let the
solutions for one animal’s additive genetic value for first parity milk yield
be

a1i =
(
a1i0 a1i1 a1i2 a1i3 a1i4

)
,

then daily yield (DY )ij for animal i on the jth day would be

DYij = φj0a1i0 + φj1a1i1 + φj2a1i2 + φj3a1i3 + φj4a1i4,

where φjm is a Legendre polynomial covariate. The 305-d milk yield,
M305i, is the sum of the daily yields,

M305i =
305∑
j=5

DYij.

Because the breeding values are constant for the calculation of every daily
yield, then

M305i = (

305∑
j=5

φj0)a1i0 + (

305∑
j=5

φj1)a1i1 + (

305∑
j=5

φj2)a1i2 + (

305∑
j=5

φj3)a1i3 + (

305∑
j=5

φj4)a1i4

or

M305i = c0a1i0 + c1a1i1 + c2a1i2 + c3a1i3 + c4a1i4,

where the cj are constants, and represent the sum of the Legendre poly-
nomial coefficients, which can be obtained by the following R script.

PH

ka=c(1:301)

P305 = PH[ka, ]

C305 = t(P305)%*%jd(301,1)

C305

[1,] 212.839141

[2,] -61.441368

[3,] -51.778637

[4,] -29.763643

[5,] -1.346922
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Now multiply the constants times the EBVs of the random regres-
sion coefficient solutions for each animal, and you have 305-d EBVs for
ranking animals.

One can question if 305 days should be the standard length of lac-
tation. In 2016 many cows lactate for longer than 305 days, and the
analysis was for test day yields up to 365 days. So a new standard could
be 365 day yields. The constants to use for that standard would be

[1,] 255.2655

[2,] 0.0000

[3,] 1.5855

[4,] 0.0000

[5,] 2.1410

For dairy sheep and goats the standard length might be less than
305 days because those two species do not lactate as long as cattle.

Note that in the dairy cattle example, it is not valid to calculate
EBV for daily yields beyond 365 days because only test day yields from
days 5 to 365 were analyzed.

4.5.1 Other Expressions

One of the first new EBV in dairy cattle as a result of random regressions
was persistency. Persistency is the ability of a cow to milk at a high level
over much of the lactation period. This would allow for better feeding
of animals, which could be sub-housed according to high, medium, or
low persistency. The trouble was how to define persistency in a random
regression model setting.

The variable, a1i1, was itself a measure of persistency, but it did
not have any units. Animals with high values were more persistent.
Because dairy producers could not relate to this number, other measures
were proposed. The idea was to have some number that represented
the downward slope of the curve after the peak yield of lactation. Cows
differed in the day on which they expressed peak yield, so the initial point
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had to be well after the day of peak yield. The measure was also desired
to be independent of peak yield or total 305-d yield.

Suppose the yield on day 60 of an average, first parity cow was 90
kg of milk and on day 260 was 68 kg. Then calculate

Persist =
DY260 + 68

DY60 + 90

which should be a number from 0 to 1, in most situations. The higher is
the value, then the more persistent is the cow. The average, first parity
cow would have a value of (68/90) = 0.756. Later parity cows tend to
have lower persistency than first parity heifers. Note that it is possible
for a cow to have a persistency value greater than one, but that should
happen very infrequently.



Chapter 5

Growth

Growth curves have been studied in many species of plants and animals,
but usually with non-linear models. Growth is the accumulation of size
and mass of an organism over time. For most agricultural species, growth
to maturity takes only 3 to 4 years at most, but for humans and other
larger mammals, growth can take decades.

In beef cattle, growth is important from birth until the animal
reaches market age, or often only the period from weaning to one year of
age is of interest. In the latter period, growth can be considered almost
linear, with a slight quadratic shape. Early growth from birth to weaning
is often ignored.

A non-linear mathematical model that describes growth from birth
to maturity is the Gompertz function, where weight at time t, WTt, is
given by the following equation.

WTt = BW + A · [1.0− exp(− exp(B) · (tC))]

where

t = unit of time, usually in days,

BW is average birthweight,

A, B, and C are parameters that define the shape of the growth curve.

81
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A is related to mature weight, B is related to the day of change from
increasing growth rate to decreasing growth rate, and C is related
to the steepness of growth, or how quickly an animal grows to
maturity.

Predicted body weights are positive at all ages, and weights never
decrease, unless an animal is being starved. Another advantage is that
there are only 4 parameters to estimate, which mean we need 5 or more
weights per animal. Unfortunately, we need to solve a nonlinear system.
A differential evolutionary algorithm can be used to solve. Figure 5.1
shows the growth curve of a pig from birth to maturity, where A = 272,
B = −12.8, and C = 2.65, and we assume the birthweight is 1.5kg.

Figure 5.1
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The figure emphasizes that growth is cumulative. With the curve
we can look at the amount of weight gained each day, as in Figure 5.2.
This is known as average daily gain, ADG. As can be seen in the figure,
ADG is not constant over the growth period.
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Figure 5.2
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Hence from birth to about 100 days of age, pigs are putting on weight
faster and faster. After 100 days, their rate of gain declines. There are
problems with measuring ADG. Firstly, the magnitude of ADG is small,
only 1 to 2.5 kg per day, so that weigh scales must be precise. Secondly,
weight gain depends on the time of day in which it is taken. Did the
pig just defecate or just eat breakfast? The amount eaten or lost could
be as much as 1 to 2.5 kg. Lastly, you need to weigh pigs every day
and this would be very labour intensive, unless it was computerized and
automated. The amount of variation in ADG from day to day would be
large for one animal.

Cumulative weights keep getting larger as the animal ages. Total
weights can be off 1 to 2.5 kg without changing the growth curve dra-
matically, and the pigs do not need to be weighed daily, but obviously
there are key times when pigs should be weighed. Birthweights, tend to
be small relative to mature weights. Thus, whether it is 1.5 kg or 3 kg at
birth, does not alter the growth curve substantially, but weights at 200
days of age can differ by 10 to 20 kilograms between animals giving very
different growth curves.
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5.1 Curve Fitting

5.1.1 Spline Function

Random regression models are linear models, thus the nonlinear Gom-
pertz function needs to be approximated by linear regressions. The phe-
notypic shape may be approximated by a spline function. Let tmax be
the maximum age, and in terms of the pig growth curve, let that be 240
days of age. tmin is day 1, and let T = t/tmax, and U = (t−100)/tmax for
t > 100 otherwise U = 0. Day 100 is when growth rate starts to decrease
with age (Figure 5.2). The phenotypic curve might be

yt = b0 + b1T + b2T
2 + b3T

3 + b4U + b5U
2 + b6U

3.

Estimates of the regression coefficients from the data in Figure 5.1
are



b0

b1

b2

b3

b4

b5

b6


=



3.77839
−96.82071
1038.66035
−393.28000

81.43243
−1306.77963

579.37098


.

A seven covariate function to model the trajectory of growth seems
too large to be practical. There are places along the curve that are not
fit well. At the beginning of the growth curve, the spline function will
predict that weights actually decrease after birth, and then turn upwards.
Also, weights do not plateau at maturity, but actually begin to decrease.
The errors in the prediction are at the beginning and end. Inbetween
weights are predicted relatively accurately. The inflection point of 100
days was assumed known, but this point would not be 100 days for every
animal, and would need to be estimated. Thus, the spline function is not
totally suitable.
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5.1.2 Classification Approach

Given the problems with the spline function, the classification approach
could possibly work much better, for all groups animals, without making
any assumptions about the shape of the growth curve, or the position
of the inflection point. Over the 240 day age range, make 48 five-day
periods and estimate the mean yield within each period. Unfortunately,
that requires estimating 48 means per curve, and thus there needs to be
a lot of data points within each mean.

5.2 Model Factors

5.2.1 Observations

Growth observations can be weight, height, length, feed intake, backfat
thickness, or loin eye area. Depending on the situation, the growth period
could be from birth to weaning, weaning to slaughter weight, or birth
to maturity. If the period is short term, often growth is linear during
this period. A lifetime curve would look the same as in Figure 5.1.
This determines the order of the random regression covariates that are
required. If growth is after weaning, then maternal genetic effects may be
unnecessary and safely ignored. So the factors listed in this section may
or may not be needed, but should at least be considered in developing a
working model for growth.

On a per animal basis there should probably be five or more mea-
sures of growth. Management systems where animals can be weighed
automatically every day should be considered, or where feed intake can
be recorded daily. However, if the management system does not allow
weighing more than four times during the life of the animal, then ran-
dom regression models should not be applied, but multiple trait models
should be considered as an alternative, where each weight is a different
trait, like birth, weaning, and end of test weights.
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5.2.2 Breed-Year-Month of Birth-Gender

The first fixed factor in the model needs to account for time trends in
growth curves for each breed and gender separately. Breeds are usu-
ally analyzed separately, but sometimes if breeds are not very numerous,
they might be analyzed together because several breeds may appear un-
der one owner. This happens in sheep in Canada. There are about four
main breeds and 55 others represented in small numbers. Separate breed
analyses are not viable, so all breeds are analyzed as one breed. Indeed
the majority of Canadian sheep are crossbreds, of many different combi-
nations of breeds. In the model we need to account for different breed
growth curves. It may be necessary to group breeds together according to
their growth similarities. There are 25 breed groupings in the Canadian
sheep data.

In some species the male is sometimes neutered, and so a third gen-
der is needed for these animals, even if the neutering occurs later, after
weaning for example.

The classification approach will be used for this factor. Thus, 48
period means within each subclass implies there should be more than
48 observations within the subclass. Assuming one breed only, then 20
years of data, times 12 months of birth per year, times 3 genders, gives
720 subclasses. Assuming a minimum of 50 observations per subclass,
then there should be more than 36,000 weight measures.

5.2.3 Maternal Genetic Effects

Growth, in mammals, is a trait that is influenced by maternal genetic
effects (Willham, 1960s). That is, the female that gives birth provides
an environment during the early growth period of that offspring. Mater-
nal effects decrease as the animal ages and becomes more independent.
However, some maternal effects can persist a long time. The female pro-
vides this environment to every offspring. Her genetic maternal ability
is passed along to her progeny (male and female), but is only expressed
when her female progeny have their own offspring.

Usually, maternal genetic effects are genetically correlated with the
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direct genetic effects, and this is often a negative correlation. The ma-
ternal genetic effects complicate random regression models for growth.
In studies that look at growth after weaning, maternal genetic effects
are sometimes ignored, which makes the analysis by random regressions
easier, but perhaps biased. Maternal effects are funneled into the direct
genetic and residual effects.

If one is working with a species in which embryo transfer and cross-
fostering are employed, then it is possible that an animal could have three
different dams affecting their growth.

The first dam is the genetic-dam, the female ancestor that provides
DNA to the offspring. If the fertilized egg is put into another unrelated
female (i.e. recipient), then the birth-dam is the female that carries the
fetus until it is born. Once the progeny is born, it may be necessary
to cross-foster to another dam, known as the raise-dam. The different
dams are associated with maternal genetic effects. The raise-dam should
receive the maternal credits for raising a progeny after it has been born.
Most of the time the three dams are the same individual, but there
can be substantial numbers of animals with two or three different dams
affecting their growth to maturity. It is possible to account for all three
dam types in a random regression model, but the programming becomes
very complicated. I have found it necessary to ignore the direct-maternal
genetic covariance and assume that it is zero to accommodate three types
of dams.

A third order Legendre polynomial would be used for this random
factor too. The additive genetic relationship matrix, and phantom parent
groups are also utilized for this factor.

5.2.4 Year - Breed - Age of Dam - Gender

The birth-dam can be either the genetic-dam or a recipient dam, in
the case of an embryo transfer. Offspring from older birth-dams often
outgrow offspring of first time mothers. This might be because offspring
from young mothers are smaller than those of older dams, or because
young mothers do not provide enough nutrients in the milk as do older
females. Age of birth-dam is usually defined within parity groups. So
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parity 1 with 2 or 3 age groups, parity 2 with 4 or 5 age groups, and so
on. The interactions with year of birth and gender of offspring probably
exist, so it is best to account for them. Years of birth may be grouped
together if there are not enough data.

Legendre polynomials of order 3 can be used for this factor. Hence
we are estimating deviations from the standard curves defined by the
Breed-Year-Month of Birth-Gender subclasses.

If multiple breeds are analyzed together, then age of dam by gender
effects should be nested within breed groups, based on breed grouping of
the birth-dam.

5.2.5 Contemporary-Management Groups

During growth, animals are usually moved to different management groups
as they get bigger or older. Thus, animals belong to a different contem-
porary group each time they are weighed. In pigs there is the farrowing
barn during which a dozen or more sows give birth within the same week.
All of the piglets could be one contemporary group, separated by gender.
After 20 days, the piglets are moved to growing pens where pigs of differ-
ent litters are merged and become competitors for feed and water. Later
those animals are moved to finishing pens where they are fed to mar-
ket weight. Some could be selected for potential herd replacements and
moved to a different facility. The contemporaries of a pig are, therefore,
constantly changing. Contemporary - Management groups are defined as
pigs of roughly the same age and gender within the same physical envi-
ronment at the time of weighing. The contemporary-management group
accounts for the environmental effects at one point in time for a group of
similarly treated individuals. We do not estimate a growth curve for each
contemporary-management group, but only the effect on weights of pigs
at one point in time. Contemporary-management groups are a random
factor in the model, and there are many of these groups. The number of
animals within a contemporary group is not critical.
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5.2.6 Direct Genetic Effects

In growth data, the additive genetic effects are known as direct genetic
effects (Willham, 1960s). The usual additive genetic relationship matrix,
A, is used, as are phantom parent groups for animals with unknown
parents.

Legendre polynomials of order 3 are used to model the animal devi-
ations from the fixed trajectories, and hence, four parameters per animal
for additive genetic effects to be estimated.

5.2.7 Animal Permanent Environmental Effects

Because animals are weighed several times, permanent environmental
effects must be taken into account. Legendre polynomials of order 3 are
used for this factor, which only exists for animals with records.

5.2.8 Maternal Permanent Environmental Effects

Because dams have more than one progeny in the data, there are non-
genetic permanent environmental effects associated with each dam. Leg-
endre polynomials of order 3 are used for this factor too.

5.2.9 Litter Effects

In litter bearing species, such as sheep, goats, and swine, there is a
common litter effect of the group of full-sibs. This has to be matched to
the birth-dam or the raise-dam, if an animal is cross-fostered to another
dam after birth. This is also a random factor in the model and can be
modeled by Legendre polynomials of order 3.
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5.2.10 Residual Variances

There should be a different residual variance for every day of age, and
these variances should be getting larger over time, as weights increase.
One can calculate phenotypic variances for each of the 48 five-day periods,
separately for each gender. Then express all of the variances relative to
the variance at birth. The assumption is that the residual variances will
follow that same relative pattern. Residual variances can be estimated
for each five-day period.

5.2.11 Summary

Growth is a very complicated trait. The main problem is having enough
weight measurements on an animal to be able to estimate the trajectories
and covariance functions. Maternal genetic effects and the correlation
of those with direct genetic effects adds a degree of difficulty to the
model analyses. Also, if each animal can have up to three different dams
influencing its growth, this too can make the analysis difficult.

If there are only 3 or 4 weights per animal, it may be much easier to
analyze them with a multiple trait model, where each weight is taken at
roughly the same age in all animals. The shape of the trajectory is then
not important, and analyses can be simplified.

5.3 Covariance Function Matrices

A study of pigs on test from day 40 to 250 at a Quebec test station was
conducted on 10,000 pigs. Two pigs per litter were represented in the
trial. Litter effects and maternal effects were ignored. Quadratic random
regressions (using Legendre polynomials) were for contemporary groups,
animal additive genetic, and animal permanent environmental. Each pig
had 7 or more weight measurements during the test, and almost daily
feed intakes.

The covariance function matrices were estimated using Gibbs sam-
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pling on a Bayesian approach to a six-trait model. Other traits were
number of times visiting the feeder (daily), time spent eating (daily),
feed intake (daily), weight, fat thickness, and loin thickness. Below are
the submatrices for weights only.

> Kaa # ADDITIVE GENETIC

[,1] [,2] [,3]

[1,] 139.47 126.60 42.25

[2,] 126.60 125.49 50.19

[3,] 42.25 50.19 26.30

> Kpe # PERMANENT ENVIRONMENT

[,1] [,2] [,3]

[1,] 117.77 86.97 13.04

[2,] 86.97 76.79 22.74

[3,] 13.04 22.74 16.81

> Kcg # CONTEMPORARY GROUPS

[,1] [,2] [,3]

[1,] 80.85 38.39 7.13

[2,] 38.39 27.97 11.46

[3,] 7.13 11.46 8.26

Using the above matrices, variances for each day on test were calcu-
lated, and then plotted (Figure 5.3).

# Legendre polynomials

LAM=LPOLY(3)

ti=c(40:250)

tmin=40

tmax=250

qi = 2*(ti - tmin)/(tmax - tmin) - 1

x=qi

x0=x*0 + 1

x2=x*x

M=cbind(x0,x,x2)

PH = M %*% t(LAM)

Vpe = PH%*%Kpe%*%t(PH)

vgpe = diag(Vpe)
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Vcg = PH%*%Kcg%*%t(PH)

vgcg = diag(Vcg)

Vaa = PH%*%Kaa%*%t(PH)

vgaa = diag(Vaa)

par(bg="aquamarine")

plot(ti,vgaa,col="blue",lwd=5,type="l",xlab="Days on Test",

ylab="Variance, kg-squared",ylim=c(0,1000))

title(main="Variances Over Days on Test")

lines(ti,vgcg,col="red",lwd=5)

lines(ti,vgpe,col="darkgreen",lwd=5)

points(55,900,pch=0,col="blue",lwd=3)

text(55,900,"Genetic",col="blue",pos=4)

points(55,700,pch=0,col="red",lwd=3)

text(55,700,"Contemporary Group",col="red",pos=4)

points(55,500,pch=0,col="darkgreen",lwd=3)

text(55,500,"PE",col="darkgreen",pos=4)

Figure 5.3
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Because of the quadratic regression the variances all increased as
days on test increased, but the larger increases did not occur until after
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150 days. Higher order polynomials were not appropriate for these data.
Residual variances were divided into 23 periods of 8 or 9 days each. The
residual variances ranged from 3.5 kg2 to 17.18 kg2, and so were much
smaller than the other components.

5.4 Expression of EBVs

With weight as the growth trait, there are two options for expressing
the breeding value of an animal and ranking them. One option is for
choosing a particular age and ranking animals on the basis of their EBV
for weight at a given age. The other option is for determining the number
of days for an animal to reach a particular weight, for example, 110 kg.
The latter option is essentially a growth rate. You want to select animals
with the smaller age.

For swine and some other species, growth has to be combined with
feed intake. Which animals grew the fastest and ate the least amount
of feed? So an index must be constructed to select for optimum growth.
In addition, a fat carcass is usually not desired, and so carcass quality
also needs to be included in the index. Increasing weight and growth
rate could also have adverse consequences on ease of birth through larger
birthweights. Growth is more than a single trait selection problem.
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Chapter 6

Survival

The lifetime of a light bulb is the number of hours that it provides light.
The lifetime of an animal is the age when it dies. For agricultural live-
stock animals, however, humans often determine when an animal dies.
Some animals are voluntarily culled because the owner perceives that they
are of lesser value than other animals. At the same time, some animals
are involuntarily culled due to old age, accident, or disease. Producers
generally want animals that are robust and hardy, and which could live
a long time. It costs money to feed and raise an animal to maturity.
Animals should have “longevity” or “stayability”. Animals should be
functional, either at producing offspring or producing milk, meat, eggs.
or wool.

The date of an animal dying or leaving the herd (flock) for any reason
gives an uncensored record of survival. An animal’s record is said to be
censored when it has not yet died or been culled due to a lack of adequate
opportunities. All current, active animals are censored. When analyzing
survival there are two possible situations.

1. Censored data are removed from the analysis, or

2. Censored data are included in the analysis.

Animals can relocate from one herd to another through sales. Such
animals may be considered culled from the original herd, but are actually
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still alive and productive in the second herd. Reasons for disposal from
herds are important to determine if records are censored. The analysis
of survival should include censored data, in an appropriate manner.

The age of an animal at the time it is culled is the observation, mea-
sured in days, months, or years. This trait is not normally distributed.
For censored animals, a prediction of length of productive life is usually
made based on probabilities estimated from past data. Thus, if an ani-
mal has lived to time t, then the probability that it will live to the next
time, t+ 1, is used as the observation.

A different approach to survival analyses is to define a fixed time
period, such as survival to 60 months of age, yes or no. Then survival to
75 months of age as another binary trait.

A non-linear approach is where time to failure is modelled. Censored
data can be included. A survival function is derived and from this a haz-
ard function is created, which is influenced by time dependent variables,
and time independent variables.

6.1 Survival Function

Consider 100 months after first calving as the productive life for a dairy
cow. A survival function goes from 1 for an animal that is alive to 0 when
the animal is dead or culled. A vertical line from 1 to 0 indicates the
moment in the productive period when the animal’s function changes, i.e.
when the animal is removed from production. The survival function for
one animal is a one-step function. Figure 6.1 shows the survival functions
of 3 cows, where one has died at 20 months after first calving, one at 45
months, and one at 66 months. The fourth graph in the lower right of
Figure 6.1 is the average step function for the three cows combined.
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Figure 6.1
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As more and more cows are accumulated and averaged together, the
survival function for the population becomes a smooth curve as in Figure
6.2. The values on the curve give the expected probability of an animal
being alive in x months after first calving. By the time a cow reaches
100 months, it has a pretty high probability of being culled in the next
month.
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Figure 6.2
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The approach of Veerkamp et al. (1999) and Galbraith (2003) was
to apply a random regression model. For each cow there would be 100
observation points of 0 or 1. A cow that has lived 30 months past first
calving and which has not yet been culled, is a censored record. If a cow
was censored, then the step function would be just ones up to the point
of being censored (e.g. 30 months), and the next seventy values would
be not known, or not observed.

The survival function in Figure 6.2, for this example, is

St =
n− dt
n

where t is the month in which an animal was last alive, n is the total num-
ber of live animals that had the opportunity to live for 100 months, and
dt is the number that have died up to and including period t. Eventually
dt comes closer to n.
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6.2 Model Factors

A population survival function is shaped similar to a lactation curve, and
so using Legendre polynomials of order 4 (5 covariates) may be appropri-
ate for fitting the general shape. However, because the scale goes from 1
down to 0, at the beginning of the curve many animals are alive, so that
the variation in the first months after calving is very small. In general,
the variance is the frequency times one minus the frequency, which has
the greatest value when frequency is 0.5. The variance becomes smaller
again at the end when most animals are dead. Legendre polynomials of
order 4 (5 covariates) will be used to model the random animal additive
genetic, and permanent environmental effects.

6.2.1 Year-Season of Birth-Gender

The classification approach can be taken to model the fixed time factor
curves for animals born in the same year and season of the year (perhaps
months). If both genders are being analyzed together, then the additional
interaction with gender is needed.

In the dairy cow example, there would be 100 categories of months
alive after first calving. That is a lot of levels (i.e. parameters) to be
estimated, and requires a lot of animals. At the same time, there are 100
observations for all uncensored animals.

If one was studying mice, then the time scale has to be altered,
and survival might be related to time after being infected with a deadly
virus. Or there could be a study of bacteria and their survial to different
antibiotics measured in hours or minutes. In some cases, there might be
only one overall fixed curve rather than several.

6.2.2 Age at First Calving

For dairy cows, the age at first calving could be important to survival
after calving. For mice and bacteria an important variable might be the
length of exposure time before the trial begins.
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6.2.3 Production Level

Dairy cows that produce at a high level, and therefore make more profit
for the owner, tend to have a higher survival advantage. Cows should
therefore, be divided in 3 or 5 categories of production levels based upon
their EBV for milk yields or protein yields. These groups could also
be modelled by classification variables or with order 4 Legendre poly-
nomials. A study should be conducted to see which alternative is more
suitable. Adjusting for production level makes the survival evaluations
free of production level, and this is called functional survival.

6.2.4 Conformation Level

Another important factor in dairy cows is their conformation scores.
More favourable looking cows (scoring Good Plus or better) have a higher
survival than cows scoring Good, Fair or Poor. Making six levels of con-
formation and fitting classification variables of order 4 Legendre poly-
nomials is necessary. Thus, the survival EBV would be free of both
production and conformation considerations.

6.2.5 Unexpected Events

An unexpected event which may have a short or long term impact on
animal survival are things like outbreaks of disease or drought. Animals
have to be culled, that would not normally be culled, to guarantee the
survival of the herd. This may affect certain types of animals (e.g. low
producers, older animals) more than others. A simple year-month-age
of cow subclass effect (not a curve, but an average percentage survival)
could be used to model routine and unexpected downturns in survival.
This could be across all herds or within provinces or regions of a country.
Besides increases in culling, this factor would also identify periods when
it was difficult to find cows such that culling is at below normal levels.
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6.2.6 Contemporary Groups

Contemporary groups are random effects in the model, and hence mod-
elled with order 4 Legendre polynomials. The definition of a contempo-
rary for survival analyses would be animals born in the same year-season,
of the same gender, and undergoing the same or similar management
practices up to first calving. Because survival looks at animals over many
months and years, animals will move around and be placed in different
environments with different managers, and therefore, under different de-
cision processes. Accounting for all of these possibilities is difficult, and
therefore, the easy option is to leave animals in their original contem-
porary group throughout their lifetime. All subsequent changes cause
variation that goes into the residual effects.

6.2.7 Animal Additive Genetic Effects

Animal additive genetic effects are random, also modelled by order 4
Legendre polynomial. The heritability of survival is generally low due
to all of the environmental influences on the decisions to keep or cull
animals.

6.2.8 Animal Permanent Environment Effects

Animal permanent environmental effects are random and account for
some of the environmental influences on each animal. Legendre polyno-
mials of order 4 could be used for this factor too.

6.2.9 Residual Variances

For dairy cows, looking at 100 months after first calving, this period
could be divided into twenty subgroups of five months each. Some trial
and error is needed to get the groupings correct.
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6.3 Example

Because this method of survival analysis is not common, a small example
will be used to illustrate. Consider a beef cattle situation and we want
to look at the survival of cows, as indicated by number of calvings, where
the maximum is set at nine. Thus, there are just nine categories, each
representing about 12 months. Assume the data are from two years,
and six contemporary groups for a total of 30 cows. Including ancestors
without survival data, there are a total of 53 animals. None of the animals
were inbred. The data are shown in Table 6.1. Note that four of the
records in year 2 were censored, which means those animals are still
active, i.e. not yet culled.

Table 6.1
Example Beef Cow Survival Data.

Year CG Cow Sire Dam Calvings Year CG Cow Sire dam Calvings
1 1 24 1 9 7 2 4 39 5 9 5
1 1 25 1 10 2 2 4 40 5 10 7*
1 1 26 2 11 5 2 4 41 5 12 5
1 1 27 2 12 6 2 4 42 6 13 6*
1 1 28 2 13 8 2 4 43 6 29 4
1 2 29 2 14 3 2 4 44 6 30 6*
1 2 30 2 15 2 2 5 45 5 14 2
1 2 31 3 16 1 2 5 46 6 17 6
1 2 32 3 17 4 2 5 47 7 18 8*
1 2 33 3 18 4 2 5 48 7 19 2
1 2 34 3 19 6 2 5 49 7 35 4
1 3 35 3 20 6 2 6 50 5 20 4
1 3 36 4 21 6 2 6 51 7 22 1
1 3 37 4 22 9 2 6 52 8 23 3
1 3 38 4 23 3 2 6 53 8 25 5

* indicates censored records

The data can be set up in R as follows.

# Example data for RRM of survival

cg=c(rep(1,5),rep(2,6),rep(3,4),rep(4,6),

rep(5,5),rep(6,4)) # contemporary groups

YR = c(rep(1,15),rep(2,15)) # Two years
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# Pedigrees

aid=c(1:53)

sid=c(rep(0,23),1,1,2,2,2,2,2,3,3,3,3,3,4,4,

4,5,5,5,6,6,6,5,6,7,7,7,5,7,8,8)

did=c(rep(0,23),c(9:23),9,10,12,13,29,30,14,

17,18,19,35,20,22,23,25)

bi=c(rep(1,23),rep(0.5,30))

# Inverse of additive relationship matrix

AI=AINV(sid,did,bi)

y = c(7,2,5,6,8, 3,2,1,4,4,6, 6,6,9,3,

5,7,5,6,4,6, 2,6,8,2,4, 4,1,3,5)

yb= c(9,9,9,9,9, 9,9,9,9,9,9, 9,9,9,9,

9,7,9,6,9,6, 9,9,8,9,9, 9,9,9,9)

sum(yb) # total number of observations

The vector y contains the number of calvings completed, and yb

contains the number of calvings that could have been observed up to the
current date.

The covariance function matrices for the random effects were as fol-
lows.

Ka =


.36814 −.17200 .32359 .00000 −.01844
−.17200 .35300 −.24600 −.03448 .00000
.32359 −.24600 .55338 .00000 −.04292
−.00000 −.03448 .00000 .06567 .00000
−.01844 .00000 −.04292 .00000 .06466

 ,

for the additive genetic effects,

Kp =


.31894 −.13760 .25719 .00000 −.01844
−.13760 .30380 −.19680 −.03448 .00000
.25719 −.19680 .46318 .00000 −.04292
.00000 −.03448 .00000 .06567 .00000
−.01844 .00000 −.04292 .00000 .06466

 ,



104 CHAPTER 6. SURVIVAL

for animal permanent environmental effects, and

Kc =


.68214 −.04600 −.03141 .00000 −.01844
−.04600 .99000 .00900 −.03448 .00000
−.03141 .00900 .14638 .00000 −.04292
.00000 −.03448 .00000 .06567 .00000
−.01844 .00000 −.04292 .00000 .06466

 ,

for contemporary groups. Therefore, the assumed heritabilities by num-
ber of calvings are shown in Table 6.2.

Table 6.2
Heritabilities by Number of Calvings.

Number of Heritability
Calvings

1 0.420
2 0.349
3 0.231
4 0.153
5 0.191
6 0.185
7 0.175
8 0.218
9 0.309

The Legendre polynomials for the random factors were order 4, and
set up as

reglp = jd(9,5)*0

tmin=1

tmax=9

no=5

for(i in 1:9){

reglp[i, ] = LPTIME(i,tmin,tmax,no)

}

The design matrices need to be constructed for years, contemporary
groups, and animal genetic and animal permanent environment factors.
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Recall that each cow with survival data has 9 observations, unless their
record is censored, then they have less than 9 observations. In total in
this example, there were 261 observations. We also need to create the
observation vector, YOB, of zeros and ones, and the residual variances for
each of the nine categories. For simplicity, let the residual variances be
equal to the numbers given in pq below, and this script makes the design
matrix for years. The year effects make use of the classification approach,
so that there are nine parameters for each year.

X = jd(261,18)*0

YOB = rep(0,261)

ri=YOB

nly=length(y)

pq=c(1:9); pq[1]=0.09; pq[2]=0.16;

pq[3]=0.21; pq[4]=0.24; pq[5]=0.25;

pq[6]=0.24; pq[7]=0.21; pq[8]=0.16;

pq[9]=0.09

pq = 1/pq # residuals inverted

k=0

for(i in 1:nly){

my = YR[i]

loff=(my-1)*9

ja = y[i] # number of ones

jb = yb[i] # number of obs for animal

for(j in 1:jb){

k=k+1

X[k,j+loff]=1

YOB[k]=1

ri[k]=pq[j]

if(j > ja)YOB[k]=0

}

}

Similarly, the design matrix for contemporary groups is generated
as follows. Because contemporary groups are random, they are modelled
by order 4 Legendre polynomials (from reglp ).

# Contemporary Groups Zc
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Zc=jd(261,30)*0

k=0

for(i in 1:nly){

mc = cg[i]

loff = (mc-1)*5 +1

lofl = loff + 4

ja = y[i]

jb = yb[i]

for(j in 1:jb){

k=k+1

Zc[k,c(loff:lofl)] = reglp[j, ]

}

}

Animal additive genetic effects are also modelled by order 4 Legendre
polynomials, as are the animal permanent environmental effects, but
which are a subset of the columns for the animal additive genetic effects.

# Animal Additive

mcol = 53*5

manc = 23*5 + 1

Za = jd(261,mcol)*0

k=0

for(i in 1:nly){

ma = anwr[i]

loff = (ma-1)*5 + 1

lofl = loff + 4

ja = y[i]

jb = yb[i]

for(j in 1:jb){

k=k+1

Za[k,c(loff:lofl)] = reglp[j, ]

}

}

Zp = Za[ ,c(manc:mcol)]

After the design matrices, one sets up matrices for the mixed model
equations, then solve them.
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# setup MME and solve

ZZ=cbind(Zc,Za,Zp)

RI=diag(ri)

# make covariance matrices

Gai=solve(Ga) # Ga = Ka

Gpi=solve(Gp) # Gp = Kp

Gci=solve(Gc) # Gc = Kc

HI= id(6) %x% Gci

GI=AI %x% Gai

PI=id(30) %x% Gpi

QI=block(HI,GI,PI)

# solve MME

RRS = MME(X,ZZ,QI,RI,YOB)

MME is a routine for setting up mixed model equations and solving
them. See Chapter 2 for details of MME and AINV.

6.3.1 Year Trajectories

The next step is to look at the solutions and make sense of the results.
The first thing is to look at the year solutions and plot them in a graph.
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Figure 6.3
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Note that in year 1 all of the animal records were uncensored, and
therefore, none of them were being observed any longer because they
have all been culled (some years after these data were obtained). In year
2, however, there were 4 censored records, and therefore, the line for year
2 is not fully completed, and will not be until all the animals in year
2 have been culled. The line for year 2 could still change, but the line
for year 1 is essentially complete and not likely to change very much in
future analyses. It will change a little due to adding relatives information
in later years.

With only 261 observations, the fixed curves (i.e. trajectories) are
not very smooth. If there were several thousand records per year, then
the curves might be more smooth looking.
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6.3.2 Contemporary Groups

Contemporary groups were modelled by order 4 Legendre polynomials.
The solutions are shown in Table 6.3.

Table 6.3
Random regression solutions for

contemporary groups.
Group c0 c1 c2 c3 c4

Number
1 0.12264 -0.00160 -0.04552 -0.02469 0.00526
2 -0.28856 -0.01639 0.09221 0.00770 -0.02311
3 0.16592 0.01799 -0.04669 0.01699 0.01784
4 0.24412 -0.02660 -0.07702 0.00605 0.01125
5 -0.03720 0.05555 0.03736 -0.01745 -0.01820
6 -0.20692 -0.02895 0.03966 0.01140 0.00695

From the values in Table 6.3, it is not easy to know which contempo-
rary groups had greater or lesser survival rates. One needs to calculate
survival differences for each of the nine categories using the Legendre
polynomials, and then one must add the year trajectories for the years in
which those contemporary groups were nested. Thus, year 1 trajectory
is added to contemporary groups 1, 2, and 3, and year 2 trajectory is
added to contemporary groups 4, 5, and 6. Then those values can be
plotted as shown in Figure 6.4.
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Figure 6.4
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From Figure 6.4, contemporary groups 1, 3, and 4 had the better
survival rates, and these corresponded to positive values for c0, and neg-
ative values for c2. Usually, the survival rates of contemporary groups
are not of interest, but they need to be taken into account in calculating
animal EBVs.

6.3.3 Animal Estimated Breeding Values

With the trait of survival, interest is primarily in sires and how they rank
on daughter survival. As with the contemporary groups, the solutions
for the regression coefficients are not informative on their own. Multiply
times the Legendre polynomials for the nine categories, and add the year
1 trajectory to those numbers. Year 1 was chosen because all animals in
that year have been culled (uncensored data). Usually one would take
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the latest year in which all animal records are uncensored. The results
for eight sires are given in Figure 6.5.

Figure 6.5
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Notice the difference from Figure 6.4. There were greater differences
among contemporary groups than among sires. To pick up differences
among sires one has to look at the end of the trajectories, or category 9.
Sires rank differently depending on which number of calvings you want
to consider as the ranking criteria. The sires and their ranks at the 1st,
5th, and 9th calvings are given in Table 6.4.
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Table 6.4
Sire rankings at 1st, 5th, and 9th calvings.

Sire 1st 5th 9th

1 7 6 7
2 4 4 4
3 2 2 6
4 5 5 1
5 6 7 5
6 8 1 8
7 3 8 2
8 1 3 3

Which sire would you choose to use in future matings?

6.3.4 Variances

The covariance function matrices used in the example were not estimated
from real data, but were concocted for illustration purposes. Still, by us-
ing an order 4 Legendre polynomial for the random factors, the variances
at the first and nineth calvings were artificially high (Figure 6.6). As al-
ready mentioned the variances at the first and nineth calvings should be
the smallest, and the largest should occur at the fifth calving. A full
study using a very large data set needs to be conducted. The random
regression model approach to survival analyses seems appropriate and
useful. Comparisons to other methods may be warranted (Jamrozik et
al. 2008).
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Figure 6.6
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Chapter 7

Fortran Programs

My first programming course was in 1969 at Purdue University. The
language was FORTRAN, and the course was very exciting to me. Pro-
grams had to be punched on cards, and then submitted to be run. Each
card held one line of FORTRAN code. So a 10-line program required ten
cards plus two or three header cards to identify user accounts and provide
information about the amount of memory and time required to run the
program, and then an ending card to separate different jobs (other peo-
ple’s programs). I worked for Prof Wayne Keim at the time, and one of
his grad students, Lane Lester, knew some FORTRAN, and we discussed
my assignments and FORTRAN at times. I wanted to learn quickly, and
Lane helped me to forge ahead of the instructor’s lecture schedule to get
to the more interesting topics of arrays and do-loops. Many of the rules
of FORTRAN stem from having to use punch cards to store programs.

In June of 1969 I went to Cornell University for graduate school and
all grad students got to use the IBM 360 machine with 128K of memory.
During the day the computer was fully utilized by the Dairy Records
Processing Laboratory, but from 11:00 pm to 7:00 am anyone could run
their programs. This was when most of the research was conducted.
There would be three or four of us running programs. Programs were
prepared during the day. If your program ran the first time it was run,
then you wanted to run the next program. If the next program was
not ready, everyone learned to compose their program in the computer

115



116 CHAPTER 7. FORTRAN PROGRAMS

room, punch it from your head directly onto cards, and then run it, get a
printout (with all of your errors), and then fix it up and try again. One
could often get help in debugging from the other grad students.

One could time their programs by looking at the printer. By print-
ing output after each cow or herd you could pinpoint the lines in your
code that required the most time. Then you could work on improving
your algorithms to save time. For example, division often took longer to
execute than multiplication, and so instead of dividing you could save
time by multiplying, or re-arrange your program so that the number of
division operations was reduced. It was a great time for experimentation
and testing different algorithms.

Shortly after I arrived at Cornell, I was given a catalogue of FOR-
TRAN subroutines that were written by Dr Henderson and Bob Everett.
These were handy routines for inverting matrices, generating random
numbers, looking up things in arrays, perpetual day routines, and oth-
ers. The inversion routine is the only one that I still use from those
days.

I am a dinosaur when it comes to writing programs. I still use
FORTRAN, and also one of the basic versions of FORTRAN. If I were
starting over as a grad student, I would learn and use C++, but C++
did not exist in 1969. Now it is too late for me to learn a new language,
plus there is no need for me to do so. Thus, this chapter is more for ideas
on how to program random regression models rather than to provide
a finely honed tool for people to use. The necessity for writing efficient
programs has lessened due to today’s compilers, large amounts of memory
and disk space, and the much faster processors. Surprisingly, however,
efficient code can still have an impact on computing times.

This chapter gives ideas on how to write a FORTRAN program to
perform a multiple trait random regression model. The example will
be lactation production of dairy cows in the first three lactations for
milk yield. The linux servers that I use now (in 2016) employ the Intel
compiler and utilize a few Intel math libraries of programs (sorting and
calculating eigenvalues and eigenvectors).
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7.1 Main Program

My strategy is to have a main program that is only one or two pages in
length. Almost every line of the main program is a call to a subroutine.
As such it is easy to follow what the program is doing. The subroutines
are also kept as simple as possible, but some can be very long.

The model assumes that all of the factors except Year-month of
calving are fitted by an order 4 set of Legendre polynomials. So every
level of these factors has 5 covariates to estimate. The Year-Month of
Calving (within parities) has 36 ten day periods to estimate.

Figure 7.1
Main Program

c Random regression model production test day milk records

c one trait, 3 lactations, order 4 Legendre polynomials

c

c y = YM(36) + RAS(5) + CG(15) + a(15) + p(15) + e(3,4)

include ’SShd.f’

c

c #############################################################

c read in parameters

c

itest = 0

igibb = 0

if(igibb.gt.0)then

c Two files for storing Gibbs samples

open(17,file=’animalVCV.d’,form=’unformatted’,

x status=’unknown’)

open(19,file=’cgVCV.d’,form=’unformatted’,

x status=’unknown’)

open(20,file=’resVC.d’,form=’formatted’,

x status=’unknown’)

endif

call params
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c

c ############################################################

c read in pedigree info

c

call peddys

c

c ############################################################

c read in data

c

call datum

c

c ############################################################

c iterations on equations to solve

c

800 iter = iter + 1

if(iter.gt.6000)go to 9901

c

ccn = 0.d0

ccd = 0.d0

c

call facYM

call facRAS

call facCG

call permenv

call genetic

c

if(igibb.gt.0)then

call facRES

endif

ccc = 100.0*(ccn/ccd)

if(mod(iter,100).eq.0)print *,iter,ccc

if(ccc.gt.0.1d-09)go to 800

c

c #############################################################

c finished, save solutions

c

9901 call finis

if(igibb.gt.0)then
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close(17)

close(19)

close(20)

endif

stop

end

include ’SSparams.f’

include ’SSpeddys.f’

include ’SSdatum.f’

include ’SSfini.f’

include ’SSYM.f’

include ’SSRAS.f’

include ’SSCG.f’

include ’SSanm.f’

include ’SSape.f’

include ’SSres.f’

include ’dkmvhf.f’

The program is only a few steps.

1. call params, to read in the necessary covariance function matri-
ces, and set up their inverses for use it the mixed model equations.

2. call peddys, to read in the pedigree information and to set up the
diagonals of A−1 for each animal.

3. call datum, to read and store the data for the iteration on data
procedure. Some arrays need to be sorted.

4. Iterate solutions by call subroutines, one for each factor in the
model.

5. call finis, to write out and save the solutions to the factors that
are of interest.

All of the subroutines are joined together by include ’SShd.f’.
This is a file that defines the variables in the program that need to
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be shared between subroutines. It specifies which variables are double
precision and which are integer. The big arrays are put into COMMON areas
so that they are stored consecutively in memory and thereby take a little
less space. Thus, during the initial programming, if an array needs to
be increased in length, this can be done in this file, and it therefore,
occurs in all other subroutines. There is no chance of forgetting to make
a change in the other subroutines.

With COMMON areas one has to worry about boundary alignments.
Thus, this problem is avoided by having separate COMMON areas for double
precision arrays and integer arrays. The boundary alignment problems
occur when integer and double precision arrays are mixed together in one
COMMON area. If the two types are to be in the same COMMON area, then
the double precision arrays should precede the integer arrays.

Figure 7.2
SShd.f

Parameter(no=15,nop=120,nam=200000,ncg=12000,nras=200,

x ndim=365,nrec=1270000,nped=500000, nym=500,mcov=5,

x ntg=36,ntim=4)

c no = 5 covariates times 3 lactations = 15

c nop = (no*(no+1))/2, half-stored matrix array size

c nam = maximum number of animals

c ncg = maximum number of contemporary groups

c nras = number of region-age-season of calving subclasses

c ndim = number of days in milk (maximum)

c nrec = maximum number of test day records

c nped = maximum number of pedigree elements to store

c nym = number of year-month subclasses

c mcov = number of covariates

Common /recs/lp(ndim,5),obs(nrec),anid(nrec),cgid(nrec),

x rasid(nrec),ymid(nym),pari(nrec),days(nrec),timg(nrec),

x mrec,mcgid,mras,mym,iseed



7.1. MAIN PROGRAM 121

c lp = legendre polynomials of order 4 for days 1 to 365 in milk

c obs = test day milk yields

c anid = animal ID associated with each obs

c cgid = contemporary group associated with each obs

c rasid = region-age-season for each obs

c ymid = year-month for each obs

c pari = parity number for each obs

c days = days in milk for each obs

c timg = 1 to 36 time groups within YM subclasses

c mrec = actual total number of test day records

c mcgid = max id of contemporary groups

c mras = max id of ras subclasses

c mym = max id of year-month subclasses

Common /peds/bii(nam),adiag(nam),sir(nam),dam(nam),

x cpa(nped),cpc(nped),cps(nped),cpd(nped),

x jped(nped),mam,mped

c bii = elements needed for A-inverse

c adiag = diagonal elements for each animal

c sir = sire ID (consecutively numbered and chronological

c dam = dam ID (consecutively numbered and chronological

c cpa = coded pedigree record, animal id

c cpc = code (0,1,2)

c cps = sire or progeny ID

c cpd = dam or mate ID

c mam = total number of animals < nam

c mped = pedigree records < nped

Common /parms/gi(nop),pi(nop),ci(3,15),res(4,3),

x ri(ndim,3),wv(nras)

c gi = genetic covariance function matrix

c pi = permanent environmental covariance function matrix

c ci = contemporary group covariance function matrix

c res = residual variances, 3 parities, 4 periods

c ri = inverses for each day in milk

c wv = work vector, used for many things
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Common /diags/pcg(nrec),pras(nrec),pymid(nrec),

x panid(nrec),wr(nam),iwv(nras),itest,igibb

c pcg = CGID sorted order

c pras = rasid sorted order

c pymid = YMID sorted order

c panid = anid sorted order

c wr = number of records per animal (many are zero

c iwv = integer work vector

c itest = 0 for good run, not zero during initial programming

c igibb not zero, means to estimate covariance matrices

Common /solns/sanm(nam,no),sape(nam,no),scg(ncg,mcov),

x sras(nras,mcov),sym(nym,ntg),ccn,ccd,ccc

c solution arrays for animal genetic, PE, cont. groups,

c and region-age-season, ccn, ccd, and ccc for

c convergence criteria

real*8 lp,obs,adiag,gi,pi,res,ri,sanm,sape,scg,sras,

x sym,rhs,ccn,ccd,ccc,wv

integer anid,cgid,ras,ymid,pari,days,timg,pcg,pras,

x pymid,panid,mped,mrec,sir,dam,cpa,cpc,cps,cpd,jped,

x wr,iwv,itest,mam,mrec,igibb,mras,mcgid,mym,iseed

The above lines are included in every subroutine that is part of the
main program. Subroutines may have some of their own variables, which
are only used within that subroutine.

Define all of the variables in this file as either real*8 or integer.
Do not rely on default rules.
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7.2 Call Params

The first subroutine to be called is params, which reads in the covariance
matrices that will be used to start the iteration process. The random fac-
tors of the model are contemporary groups, and animal additive genetic
and animal permanent environmental effects.

Figure 7.3
SSparams.f

subroutine params

include ’SShd.f’

real*8 varc,varg,varp,x,z(5),hh(15)

open(10,file=’GP4.d’,form=’formatted’,status=’old’)

gi = 0.d0

pi = 0.d0

ri = 0.d0

ci = 0.d0

res = 0.d0

lp=0.0d0

c

10 read(10,1001,end=20)kr,kc,varg,varp

1001 format(1x,2i4,8d20.10)

if(kr.eq.0)go to 20

m = ihmssf(kr,kc,no)

gi(m) = varg

pi(m) = varp

go to 10

c

20 read(10,1002,end=21)kp,kr,kc,varc

1002 format(1x,3i4,d20.10)

m = ihmssf(kr,kc,mcov)

ci(kp,m)=varc
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go to 20

21 close(10)

c

c residual variances, by parity and days groups

c

open(11,file=’RES4.d’,form=’formatted’,status=’old’)

do 22 i=1,3

do 22 j=1,4

read(11,*,end=30)ka,x

res(j,i)=x

22 continue

30 close(11)

c

call dkmvhf(gi,no,wv,iwv)

call dkmvhf(pi,no,wv,iwv)

do 81 kp=1,3

hh = 0.d0

do 82 m=1,15

hh(m)=ci(kp,m)

82 continue

call dkmvhf(hh,mcov,wv,iwv)

do 83 m=1,15

ci(kp,m)=hh(m)

83 continue

81 continue

c

ri = 0.0d0

do 31 i=1,45

ri(i,1) = 1.d0/res(1,1)

ri(i,2) = 1.d0/res(1,2)

ri(i,3) = 1.d0/res(1,3)

31 continue

do 32 i=46,115

ri(i,1) = 1.d0/res(2,1)

ri(i,2) = 1.d0/res(2,2)

ri(i,3) = 1.d0/res(2,3)

32 continue

do 33 i=116,265
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ri(i,1) = 1.d0/res(3,1)

ri(i,2) = 1.d0/res(3,2)

ri(i,3) = 1.d0/res(3,3)

33 continue

do 34 i=266,365

ri(i,1) = 1.d0/res(4,1)

ri(i,2) = 1.d0/res(4,2)

ri(i,3) = 1.d0/res(4,3)

34 continue

c

c read in Legendre polynomials, order 4

c

open(12,file=’LPOLY4.d’,form=’formatted’,status=’old’)

lp = 0.0d0

40 read(12,1201,end=55)kdim,z

1201 format(2x,i5,2x,5f20.10)

do 42 k=1,5

lp(kdim,k)=z(k)

42 continue

go to 40

55 close(12)

c

c read in a random number seed, initialize random number

c generators

c

open(13,file=’seedno.d’,form=’formatted’,status=’old’)

read(13,1301,end=65)iseed

1301 format(1x,i10)

call firan(iseed)

close(13)

return

end

Four input files are needed, a) one for the covariance matrices for
genetic, permanent environmental, and contemporary groups, b) one for
the residual variances, c) one for the Legendre polynomials, and d) one
for the random number seed. Remember to create the appropriate files,
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and make sure the format statements are in agreement with the data
files.

The inverses of the covariance matrices are obtained using dkmvhf.f.
This is Henderson’s inversion routine that he wrote back in the 1960’s.
His version was called djnvhf.f, but Karin Meyer found a way to improve
its speed. Henderson’s version physically re-arranges rows and columns
during the inversion process. Meyer’s version merely kept an array of
indexes of the rows to be re-arranged, but did not actually re-arrange
them physically until the end. This increased the speed very much, and
so the new version became dkmvhf.f where the km is for Karin Meyer.
One advantage of both routines is that the matrix can have rows and
columns that are all zeros. Many inversion routines only want to invert
matrices that are non-singular, so that you must remove the zero rows
and columns before calling the subroutine. This routine is given in the
Appendix.

Note that in the version of FORTRAN that I am using that I can
set an entire array to zero with one statement, gi = 0.d0. It appears to
be important to use 0.d0 rather than 0.0 in this version of FORTRAN.
The later results in 0, but only to 7 or so decimal places, which can be
critical to some programs. Thus, I always use the 0.d0 option in my
programs.

The subroutine firan is specialized software for initializing a series
of random number generators for different distributions. The Mersene
twister is used as the algorithm in these routines which has a very long
cycle time, (219937 − 1). The cycle time is how many numbers it takes
before the sequence starts to repeat itself. When using Gibbs sampling
it is good to have a long cycle time.

7.3 Call Peddys

The following subroutine reads in the pedigree with the bii values needed
for the inverse of the additive relationship matrix. These values were
computed by another series of programs which order the animals chrono-
logically, and then calculate the inbreeding coefficients, as long as parents
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are processed before their progeny.

The subroutine also reads in a ‘coded’ pedigree file, which has an
animal, then all of its progeny following, and the mate that produced that
progeny. This is so additive relationships can be accounted for easily in
the iteration program.

Figure 7.4
SSpeddys.f

subroutine peddys

include ’SShd.f’

character*8 oid

real*8 x,v,z

open(10,file=’PARTES.d’,form=’formatted’,

x status=’old’)

adiag = 0.d0

sir = 0

dam = 0

bii = 0.d0

mam=0

10 read(10,1001,end=50)ka,ks,kd,x,z,oid

1001 format(1x,3i10,1x,d20.10,2x,d20.10,1x,a8)

mam = mam + 1

sir(ka) = nam

if(ks.gt.0)sir(ka) = ks

dam(ka) = nam

if(kd.gt.0)dam(ka) = kd

bii(ka) = x

adiag(ka) = adiag(ka) + x

v = 0.25d0*x
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if(ks.gt.0)adiag(ks)=adiag(ks)+v

if(kd.gt.0)adiag(kd)=adiag(kd)+v

c

go to 10

50 close(10)

print *,’peddys, mam= ’,mam

c

c read and store coded pedigree file

c

open(11,file=’CARTES.d’,form=’formatted’,

x status=’old’)

mped = 0

jped = 0

cpa = 0

cpc = 0

cps = 0

cpd = 0

60 read(11,1101,end=90)ia,ic,is,id

1101 format(1x,i10,i3,1x,2i10)

mped = mped + 1

if(mped.gt.nped)go to 89

cpa(mped)=ia

cpc(mped)=ic

if(is.lt.1)is = nam

if(id.lt.1)id = nam

cps(mped)=is

cpd(mped)=id

if(ic.eq.0)jped(ia)=mped

go to 60

c

89 print *,’nped limit exceeded in SSpeddys.f’

90 close(11)

print *,’peddys, mped = ’,mped

c

return

end
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7.4 Call Datum

The data have been prepared by other programs, and the levels of each
factor have been converted to a consecutive number from 1 to the maxi-
mum number of levels for that factor.

One could also calculate means of the milk yields by days in milk,
year months, or whatever may be of interest.

At the end of the routine, the levels of the factors were sorted so
that levels of each factor could be processed one at a time, in sequence.
Thus, the diagonal blocks for each factor can be constructed at the same
time as accumulating the right hand sides of the mixed model equations
(MME). Thus, there is no need to save the diagonal blocks on disk or
in memory. This is also handy if Gibbs sampling is to be used to esti-
mate the covariance function matrices in the same program, because the
covariance function matrices would change with each sampling.

Lastly, the solution vectors are set to zeros before the iterations
begin. Otherwise there could be unknown information in those arrays
that might cause problems with convergence.
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Figure 7.5
SSdatum.f

subroutine datum

include ’SShd.f’

real*8 p(3)

open(11,file=’MILKTDM.d’,form=’formatted’,

x status=’old’)

mrec = 0

obs=0.d0

nerr = 0

11 read(11,1101,end=20,err=88)iam,iym,iras,icg,

x jdim,jtim,p

1101 format(1x,6i10,3f9.2)

c

if(jdim.lt.5)go to 11

if(jdim.gt.ndim)go to 11

mrec = mrec + 1

if(mrec.gt.nrec)go to 19

anid(mrec) = iam

cgid(mrec) = icg

rasid(mrec) = iras

ymid(mrec) = iym

timg(mrec) = jtim

if(icg.gt.mcgid)mcgid=icg

if(iras.gt.mras)mras=iras

if(iym.gt.mym)mym=iym

pari(mrec) = 1

if(p(2).gt.-9000.0)pari(mrec)=2

if(p(3).gt.-9000.0)pari(mrec)=3

kp=pari(mrec)

obs(mrec) = p(kp)

days(mrec) = jdim

go to 11

19 print *,’Too many records’

go to 20
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88 print *,’Err rec’,mrec

go to 11

20 close(11)

print *,’ datum, mrec= ’,mrec

35 write(30,3005)mrec,nrec,mcgid,ncg,mras,nras,

x mym,nym

3005 format(1x,2i10,’ recs’/1x,2i10,’ mcgid’/1x,2i10,

x ’ mras’/1x,2i10,’ mym’)

close(11)

c

c sort data by levels of different factors

c IPSORT is an Intel math library function

kflag = 1

ier = 0

call IPSORT(ymid,mrec,pymid,kflag,ier)

call IPSORT(rasid,mrec,pras,kflag,ier)

call IPSORT(cgid,mrec,pcg,kflag,ier)

call IPSORT(anid,mrec,panid,kflag,ier)

c

c set all solution vectors to zero

c

sanm = 0.d0

sape = 0.d0

scg = 0.d0

sras = 0.d0

sym = 0.d0

return

end

7.5 Iteration Subroutines

The main program can be thought of as ‘modular’. There are fixed
factors, random factors, and the animal additive genetic factor. Fixed
factors do not have any covariance function matrices. There are two types
of fixed factors in this model. The Year-Month of calving subclasses each
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have 36 ten-day periods associated with them - to model the trajectory of
test day milk yields. The other type is the region-age-season subclasses
which are modelled by order 4 Legendre polynomials, and thus, there are
5 parameters for each subclass.

7.5.1 Year-Month Factor

Figure 7.6
SSym.f

subroutine facYM

include ’SShd.f’

c

real*8 diags(ntg),vnois(ntg),ay(ntg),

x XRY(ntg),c,y,z,w,x,ddif,xad

integer levs(nrec),iork(nop),mfac

c #######################################################

c determine number of observations per

c level of the factor, store in levs

levs = 0

mfac = 0

do 8 krec=1,mrec

iym = ymid(krec)

if(iym.gt.mfac)mfac = iym

levs(iym) = levs(iym) + 1

8 continue

kend=0

c #######################################################

c For each level of the factor

c adjust observations for all other solutions

c save in XRY, make diags of MME

do 11 iym = 1,mfac

jrec = levs(iym)

XRY = 0.d0

diags = 0.d0
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if(jrec.lt.1)go to 11

kstr = kend+1

kend = kend+jrec

do 10 lrec = kstr,kend

krec = pras(lrec)

c

iam = anid(krec)

icg = cgid(krec)

iras = rasid(krec)

jdim = days(krec)

jtim = timg(krec)

kp = pari(krec)

ja = (kp-1)*5

c = ri(jdim,kp)

y = obs(krec)

do 15 j=1,mcov

ka=ja+j

y = y - (scg(icg,j) + sanm(iam,ka)

x + sras(iras,j) + sape(iam,ka))*lp(jdim,j)

15 continue

c

xad = y*c

XRY(jtim)=XRY(jtim) + xad

diags(jtim)=diags(jtim)+ c

c

10 continue

c ####################################################

c solve for new solution for this level of factor

c

vnois = 0.d0

c ###################################################

c if estimating covariance matrices then

c generate sampling variance to

c add to solutions

if(igibb.gt.0)then

do 17 i=1,ntg

call fgnor3(z)

if(diags(i).gt.0.d0)diags(i)=1.d0/diags(i)
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vnois(i)=z*diags(i)

17 continue

endif

c

do 25 j=1,ntg

z = XRY(j)*diags(j)

c add vnois, compute convergence criteria

z = z + vnois(j)

ddif = z - sym(iym,j)

ccn = ccn + ddif*ddif

ccd = ccd + z*z

sym(iym,j) = z

25 continue

11 continue

if(itest.gt.0)then

jj=6

print 5003,jj,(sym(jj,L),L=1,5)

5003 format(’ PYM’,i4,5f12.4)

endif

return

end

7.5.2 Region-Age-Season

The above statements were for the Year-Month subclasses, modelling
the trajectories of lactation curves for milk yield using 36 ten-day peri-
ods. Now we compare this routine to one for region-age-seasons which
are modelled by order 4 Legendre polynomials as covariates, but only
within a parity. Subclasses were numbered consecutively across region-
age-seasons. Ages are nested within parities and thus, only 5 covariates
per subclass. Dealing with the covariates requires different coding.

Figure 7.7
SSras.f

subroutine facRAS
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include ’SShd.f’

c

real*8 diags(200),vnois(200),ay(20),

x XRY(20),work(200),hh(200),c,y,z,w,x,ddif,xad

integer levs(nrec),iork(200),mfac

c #######################################################

c determine number of observations per

c level of the factor, store in levs

levs = 0

mfac = 0

do 8 krec=1,mrec

iras = rasid(krec)

if(iras.gt.mfac)mfac = iras

levs(iras) = levs(iras) + 1

8 continue

kend=0

c #######################################################

c For each level of the factor

c adjust observations for all other solutions

c save in XRY, make diags of MME

do 11 iras = 1,mfac

jrec = levs(iras)

XRY = 0.d0

diags = 0.d0

if(jrec.lt.1)go to 11

kstr = kend+1

kend = kend+jrec

do 10 lrec = kstr,kend

krec = pras(lrec)

iam = anid(krec)

icg = cgid(krec)

iym = ymid(krec)

jdim = days(krec)

jtim = timg(krec)

kp = pari(krec)

ja = (kp-1)*5
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c = ri(jdim,kp)

y = obs(krec) - sym(iym,jtim)

do 15 j=1,mcov

ka=ja+j

y = y - (scg(icg,j) + sanm(iam,ka)

x + sape(iam,ka))*lp(jdim,j)

15 continue

c

xad = y*c

do 17 j=1,mcov

kb=ja+j

XRY(j)=XRY(j) + xad*lp(jdim,j)

do 19 m=j,mcov

kc=ja+m

ma=ihmssf(j,m,mcov)

diags(ma)=diags(ma)+lp(jdim,j)*c*lp(jdim,m)

19 continue

17 continue

c

10 continue

c ####################################################

c solve for new solution for this level of factor

c

call dkmvhf(diags,mcov,work,iork)

vnois = 0.d0

c ###################################################

c if estimating covariance matrices then

c do cholesky decomposition on diags

c generate sampling variance (vnois) to

c add to solutions

if(igibb.gt.0)then

call cholsk(diags,work,mcov)

call vgnor(vnois,work,hh,mcov)

endif

c

do 25 j=1,mcov

z = 0.d0

do 27 k=1,mcov
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m=ihmssf(j,k,mcov)

z = z + diags(m)*XRY(k)

27 continue

c add vnois, compute convergence criteria

z = z + vnois(j)

ddif = z - sras(iras,j)

ccn = ccn + ddif*ddif

ccd = ccd + z*z

sras(iras,j) = 0.5d0*(z + sras(iras,j))

25 continue

11 continue

if(itest.gt.0)then

jj=6

print 5003,jj,(sras(jj,L),L=1,5)

5003 format(’ RAS’,i4,5f12.4)

endif

return

end

7.5.3 Contemporary Groups

Contemporary groups (CG) are defined as cows in the same parity num-
ber calving within a few months of each other in the same herd and year.
CG are modelled by order 4 Legendre polynomials. Because three pari-
ties are being analyzed together, it is possible for there to be 3 covariance
function matrices for CG effects, i.e. one for each parity. We have as-
sumed this would be true. However, if we find that the three covariance
matrices are similar, then we could assume the same covariance function
matrix for all parities.

The subroutine for CG is different from that for RAS because CG
is a random factor, and we are allowing for three separate covariance
function matrices, and the coding has to allow for the estimation of new
matrices, and saving them in a file.

Figure 7.8
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SScg.f

subroutine facCG

include ’SShd.f’

c

real*8 diags(200),vnois(200),ay(20),

x XRY(20),work(200),hh(200),c,y,z,w,x,ddif,xad

real*8 ssc(3,15),VIc(15)

integer levs(nrec),iork(200),levp(nrec),mfac

c #######################################################

c determine number of observations per

c level of the factor, store in levs

levs = 0

kop = 15

levp = 0

ssc=0.d0

mfac = 0

do 8 krec=1,mrec

icg = cgid(krec)

if(icg.gt.mfac)mfac = icg

levs(icg) = levs(icg) + 1

levp(icg) = pari(krec)

8 continue

kend=0

c #######################################################

c For each level of the factor

c adjust observations for all other solutions

c save in XRY, make diags of MME

do 11 icg = 1,mfac

jrec = levs(icg)

XRY = 0.d0

diags = 0.d0

if(jrec.lt.1)go to 11

kstr = kend+1

kend = kend+jrec

do 10 lrec = kstr,kend
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krec = pcgid(lrec)

iam = anid(krec)

iras = rasid(krec)

iym = ymid(krec)

jdim = days(krec)

jtim = timg(krec)

kp = pari(krec)

ja = (kp-1)*5

c = ri(jdim,kp)

y = obs(krec) - sym(iym,jtim)

do 15 j=1,mcov

ka=ja+j

y = y - (sras(iras,j) + sanm(iam,ka)

x + sape(iam,ka))*lp(jdim,j)

15 continue

c

xad = y*c

do 17 j=1,mcov

kb=ja+j

XRY(j)=XRY(j) + xad*lp(jdim,j)

do 19 m=j,mcov

kc=ja+m

ma=ihmssf(j,m,mcov)

diags(ma)=diags(ma)+lp(jdim,j)*c*lp(jdim,m)

19 continue

17 continue

c

10 continue

c ####################################################

c Add inverse of covariance function matrix to diags

c before inverting (one of three possible inverses)

c

m=0

kp = levp(icg)

do 61 ir=1,mcov

do 61 ic=ir,mcov

m=m+1

diags(m)=diags(m)+ci(kp,m)
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61 continue

call dkmvhf(diags,mcov,work,iork)

vnois = 0.d0

c ###################################################

c if estimating covariance matrices then

c do cholesky decomposition on diags

c generate sampling variance (vnois) to

c add to solutions

if(igibb.gt.0)then

call cholsk(diags,work,mcov)

call vgnor(vnois,work,hh,mcov)

endif

c

do 25 j=1,mcov

z = 0.d0

do 27 k=1,mcov

m=ihmssf(j,k,mcov)

z = z + diags(m)*XRY(k)

27 continue

c add vnois, compute convergence criteria

z = z + vnois(j)

ddif = z - scg(icg,j)

ccn = ccn + ddif*ddif

ccd = ccd + z*z

scg(icg,j) = z

25 continue

c

c if estimating covariance matrices - must accumulate

c sum of squares

if(igibb.gt.0)then

m=0

ndf(kp)=ndf(kp)+1

do 71 ir=1,mcov

z = scg(icg,ir)

do 71 ic=ir,mcov

m=m+1

ssc(kp,m)=ssc(kp,m)+scg(icg,ic)*z

71 continue
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endif

11 continue

c

c Estimate new ci matrices

c

if(igibb.gt.0)then

kop=15

do 217 kp=1,3

nde = ndf(kp) + 2

call fgchi1(nde,w)

z=1.d0/w

do 215 k=1,kop

VIc(k)=ssc(kp,k)*z

215 continue

write(17)iter,VIc

call dkmvhf(VIc,mcov,work,iork)

do 216 k=1,kop

ci(kp,k)=VIc(k)

216 continue

217 continue

endif

if(itest.gt.0)then

jj=6

print 5003,jj,(scg(jj,L),L=1,5)

5003 format(’ CGS’,i4,5f12.4)

endif

return

end

7.5.4 Animal Permanent Environmental

Animal permanent environmental (APE) effects concern all three pari-
ties, and are correlated between parities, so that there are 15 covariates
to estimate for each animal. Each parity is modelled by order 4 Legendre
polynomials. The covariance matrix is therefore, 15 by 15, and there is
only one covariance matrix.



142 CHAPTER 7. FORTRAN PROGRAMS

Figure 7.9
SSape.f

subroutine facAPE

include ’SShd.f’

c

real*8 diags(nop),vnois(nop),ay(no),

x XRY(no),work(nop),hh(nop),c,y,z,w,x,ddif,xad

real*8 ssp(nop),VIp(nop)

integer levs(nrec),iork(nop),mfac

c #######################################################

c determine number of observations per

c level of the factor, store in levs

levs = 0

ssp=0.d0

mfac = 0

do 8 krec=1,mrec

iam = anid(krec)

if(iam.gt.mfac)mfac = iam

levs(iam) = levs(iam) + 1

8 continue

kend=0

c #######################################################

c For each level of the factor

c adjust observations for all other solutions

c save in XRY, make diags of MME

do 11 iam = 1,mfac

jrec = levs(iam)

XRY = 0.d0

diags = 0.d0

if(jrec.lt.1)go to 11

kstr = kend+1

kend = kend+jrec

do 10 lrec = kstr,kend

krec = pcgid(lrec)
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icg = cgid(krec)

iras = rasid(krec)

iym = ymid(krec)

jdim = days(krec)

jtim = timg(krec)

kp = pari(krec)

ja = (kp-1)*5

c = ri(jdim,kp)

y = obs(krec) - sym(iym,jtim)

do 15 j=1,mcov

ka=ja+j

y = y - (sras(iras,j) + sanm(iam,ka)

x + scg(icg,j) )*lp(jdim,j)

15 continue

c

xad = y*c

do 17 j=1,mcov

kb=ja+j

XRY(kb)=XRY(kb) + xad*lp(jdim,j)

do 19 m=j,mcov

kc=ja+m

ma=ihmssf(kb,kc,no)

diags(ma)=diags(ma)+lp(jdim,j)*c*lp(jdim,m)

19 continue

17 continue

c

10 continue

c ####################################################

c Add inverse of covariance function matrix to diags

c before inverting (one of three possible inverses)

c

m=0

do 61 ir=1,no

do 61 ic=ir,no

m=m+1

diags(m)=diags(m)+pi(m)

61 continue

call dkmvhf(diags,no,work,iork)
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vnois = 0.d0

c ###################################################

c if estimating covariance matrices then

c do cholesky decomposition on diags

c generate sampling variance (vnois) to

c add to solutions

if(igibb.gt.0)then

call cholsk(diags,work,no)

call vgnor(vnois,work,hh,no)

endif

c

do 25 j=1,no

z = 0.d0

do 27 k=1,no

m=ihmssf(j,k,no)

z = z + diags(m)*XRY(k)

27 continue

c add vnois, compute convergence criteria

z = z + vnois(j)

ddif = z - sape(iam,j)

ccn = ccn + ddif*ddif

ccd = ccd + z*z

sape(icg,j) = z

25 continue

c

c if estimating covariance matrices - must accumulate

c sum of squares

if(igibb.gt.0)then

m=0

ndf=ndf+1

do 71 ir=1,no

z = sape(iam,ir)

do 71 ic=ir,no

m=m+1

ssp(kp,m)=ssp(kp,m)+sape(iam,ic)*z

71 continue

endif

11 continue
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c

c Estimate new pi matrix

c

if(igibb.gt.0)then

nde = ndf + 2

call fgchi1(nde,w)

z=1.d0/w

do 215 k=1,nop

VIp(k)=ssp(k)*z

215 continue

nm=1

write(19)iter,nm,VIp

call dkmvhf(VIp,no,work,iork)

do 216 k=1,nop

pi(k)=VIp(k)

216 continue

217 continue

endif

if(itest.gt.0)then

jj=6

print 5003,jj,(sape(jj,L),L=1,5)

5003 format(’ APE’,i4,5f12.4)

endif

return

end

7.5.5 Animal Additive Genetic

Animal additive genetic (ANM) effects concern all three parities, like the
APE, and are correlated between parities, so that there are 15 covariates
to estimate for each animal. Each parity is modelled by order 4 Legendre
polynomials. The covariance matrix is therefore, 15 by 15, and there is
only one covariance matrix.

However, the big difference from APE are the additive genetic re-
lationships that must be taken into account amongst all animals. This
accounts for the extra length of the following subroutine.
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Figure 7.10
SSanm.f

subroutine facANM

include ’SShd.f’

c

real*8 diags(nop),vnois(nop),ay(no),

x XRY(no),work(nop),hh(nop),c,y,z,w,x,ddif,xad

real*8 ssa(nop),VIa(nop),tcc(no),dg

integer levs(nrec),iork(nop),mfac

c #######################################################

c determine number of observations per

c level of the factor, store in levs

levs = 0

ssa=0.d0

mfac = mam

do 8 krec=1,mrec

iam = anid(krec)

levs(iam) = levs(iam) + 1

8 continue

kend=0

c #######################################################

c For each level of the factor

c adjust observations for all other solutions

c save in XRY, make diags of MME

do 11 iam = 1,mfac

jrec = levs(iam)

XRY = 0.d0

diags = 0.d0

if(jrec.lt.1)go to 11

kstr = kend+1

kend = kend+jrec

do 10 lrec = kstr,kend

krec = pcgid(lrec)

icg = cgid(krec)
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iras = rasid(krec)

iym = ymid(krec)

jdim = days(krec)

jtim = timg(krec)

kp = pari(krec)

ja = (kp-1)*5

c = ri(jdim,kp)

y = obs(krec) - sym(iym,jtim)

do 15 j=1,mcov

ka=ja+j

y = y - (sras(iras,j) + sape(iam,ka)

x + scg(icg,j) )*lp(jdim,j)

15 continue

c

xad = y*c

do 17 j=1,mcov

kb=ja+j

XRY(kb)=XRY(kb) + xad*lp(jdim,j)

do 19 m=j,mcov

kc=ja+m

ma=ihmssf(kb,kc,no)

diags(ma)=diags(ma)+lp(jdim,j)*c*lp(jdim,m)

19 continue

17 continue

c

10 continue

c

c Must account for genetic relationships among animals

c

50 uped = jped(iam)

tcc=0.d0

if(uped.lt.1)go to 11

iam = cpa(uped)

if(iam.ne.ianm)print *,’xxxxx’,iam,ianm

c

850 jcode = cpc(uped)

if(cpa(uped).ne.ianm)go to 432

if(jcode.eq.0)then
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js = cps(uped)

jd = cpd(uped)

c = bii(ianm)*0.5d0

do 406 jc=1,ntr

tcc(jc)=tcc(jc)+c*(sanm(js,jc)+sanm(jd,jc))

406 continue

else

jp = cps(uped)

jm = cpd(uped)

d = bii(jp)*0.5d0

do 412 ja=1,ntr

tcc(ja)=tcc(ja)+d*(sanm(jp,ja)-0.5d0*sanm(jm,ja))

412 continue

endif

c

405 uped = uped + 1

if(iam.ne.cpa(uped))go to 432

if(uped.gt.mped)go to 432

go to 850

c

432 do 435 jr=1,no

s=0.d0

do 437 jc=1,no

s=s + gi(ihmssf(jr,jc,ntr))*tcc(jc)

437 continue

XRY(jr)=XRY(jr)+s

435 continue

c ####################################################

c Add inverse of covariance function matrix to diags

c before inverting (one of three possible inverses)

c

dg = adiag(iam)

m=0

do 61 ir=1,no

do 61 ic=ir,no

m=m+1

diags(m)=diags(m)+gi(m)*dg

61 continue
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call dkmvhf(diags,no,work,iork)

vnois = 0.d0

c ###################################################

c if estimating covariance matrices then

c do cholesky decomposition on diags

c generate sampling variance (vnois) to

c add to solutions

if(igibb.gt.0)then

call cholsk(diags,work,no)

call vgnor(vnois,work,hh,no)

endif

c

ay=0.d0

js = sir(iam)

jd = dam(iam)

do 25 j=1,no

z = 0.d0

do 27 k=1,no

m=ihmssf(j,k,no)

z = z + diags(m)*XRY(k)

27 continue

c add vnois, compute convergence criteria

z = z + vnois(j)

ddif = z - sanm(iam,j)

ccn = ccn + ddif*ddif

ccd = ccd + z*z

sanm(iam,j) = z

ay(j)=sanm(iam,j)-0.5d0*(sanm(ja,j)+sanm(jd,j))

25 continue

c

c if estimating covariance matrices - must accumulate

c sum of squares of Mendelian sampling terms

if(igibb.gt.0)then

if(jrec.gt.0)then

m=0

ndf=ndf+1

d = bii(iam)

do 71 ir=1,no
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z = ay(ir)*d

do 71 ic=ir,no

m=m+1

ssa(m)=ssa(m)+ay(ic)*z

71 continue

endif

endif

11 continue

c

c Estimate new gi matrix

c

if(igibb.gt.0)then

nde = ndf + 2

call fgchi1(nde,w)

z=1.d0/w

do 215 k=1,nop

VIa(k)=ssa(k)*z

215 continue

nm=2

write(19)iter,nm,VIa

call dkmvhf(VIa,no,work,iork)

do 216 k=1,nop

gi(k)=VIa(k)

216 continue

217 continue

endif

if(itest.gt.0)then

jj=6

print 5003,jj,(sanm(jj,L),L=1,5)

5003 format(’ ANM’,i4,5f12.4)

endif

return

end
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7.5.6 Residual Effects

If the program is set to estimate covariance matrices, then a subroutine
is needed to estimate the residual variances by parity and by periods
within a lactation. If igibb=0, then this subroutine is skipped, and no
residual variances are calculated.

Figure 7.11
SSres.f

subroutine facRES

include ’SShd.f’

c

real*8 diags(nop),vnois(nop),ay(no),

x XRY(no),work(nop),hh(nop),c,y,z,w,x,ddif,xad

real*8 sse(3,ntim),VI(nop),ndf(3,ntim)

integer levs(nrec),iork(nop),mfac

c #######################################################

c determine number of observations per

c level of the factor, store in levs

levs = 0

sse=0.d0

mfac = 0

do 8 krec=1,mrec

itim = timg(krec)

levs(itim) = levs(itim) + 1

8 continue

kend=0

c #######################################################

c For each level of the factor

c adjust observations for all other solutions

c save in XRY, make diags of MME

do 11 itim = 1,mfac

jrec = levs(itim)

if(jrec.lt.1)go to 11
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kstr = kend+1

kend = kend+jrec

do 10 lrec = kstr,kend

krec = pcgid(lrec)

iam = anid(krec)

icg = cgid(krec)

iras = rasid(krec)

iym = ymid(krec)

jdim = days(krec)

jtim = timg(krec)

kp = pari(krec)

ja = (kp-1)*5

c = ri(jdim,kp)

y = obs(krec) - sym(iym,jtim)

do 15 j=1,mcov

ka=ja+j

y = y - (sras(iras,j) + sape(iam,ka)

x + scg(icg,j)+sanm(iam,ka) )*lp(jdim,j)

15 continue

c

sse(jtim,kp)=sse(jtim,kp)+y*y

ndf(jtim,kp)=ndf(jtim,kp)+1.d0

c

10 continue

c

do 31 jtim=1,4

do 32 kp=1,3

nde = ndf(jtim,kp)+2

call fgchi1(nde,w)

res(jtim,kp) = sse(jtim,kp)/w

32 continue

31 continue

ri=0.d0

do 41 i=1,45

do 141 kp=1,3

ri(i,kp)=1.d0/res(1,kp)

141 continue
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41 continue

do 42 i=46,115

do 142 kp=1,3

ri(i,kp)=1.d0/res(2,kp)

142 continue

42 continue

do 43 i=116,265

do 143 kp=1,3

ri(i,kp)=1.d0/res(3,kp)

143 continue

43 continue

do 44 i=266,365

do 144 kp=1,3

ri(i,kp)=1.d0/res(4,kp)

144 continue

44 continue

c

c save new estimates in file with sample number

c

write(20,1235)iter,(res(i,j),i=1,4),j=1,3)

1235 format(1x,i10,12f15.5)

c

return

end

7.5.7 Finish Off

The last subroutine is call finis, which is to save solutions for the im-
portant factors, usually just the genetic evaluations of animals. However,
some may want to save all of the solutions for all factors.

With the genetic evaluations one may also want to save informa-
tion about the number of records each animal had (by parity number),
and perhaps number of progeny, and sire and dam identifications. This
information could be used to approximate the reliabilities of the EBVs.

Thus, this last subroutine depends on the wishes of the user to decide
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what information should be saved and how it should be saved. Thus, no
coding will be provided for this subroutine.

7.6 Other Items

If Gibbs sampling was performed then there will be three files of sample
estimates for each covariance matrix and the residuals. The burn-in
period needs to be determined, then the remaining samples need to be
averaged in some manner. Either all of the samples, after burn-in, could
be sampled, or every mth sample could be averaged, where m is a number
like 7 or 17 or 19. Consecutive samples are known to be dependent on
the previous sample, and by averaging every mth sample this dependency
is lessened considerably. Often the same results are obtained either way.

After new covariance matrices are available, then another run is
made where the new parameters are inputted and igibb = 0 is imposed.
This is to obtain solutions to the mixed model equations (MME).

Having the EBV, then one can compute the 305-d breeding values
and persistency in a follow-up program. There may be other necessities
to calculate for users of the EBVs. Note also that none of the preliminary
programs have been provided. Programs for preparing the data, number-
ing the levels of each factor, editting out the error records, and ordering
the animals chronologically for calculating inbreeding coefficients have
also not been shown.

The programs shown in this chapter are not available for download-
ing. If you want to use them, then you should type them in from these
pages. Why? Because it will help you to learn what the programs are
doing, and you might find that I have some errors in them. I hope there
are few errors, but you could find some. As I mentioned at the begin-
ning of this chapter, the programs are merely to give you an idea about
writing code for a random regression model.
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DKMVHF - Inversion
Routine

Matrix inversion routine of C. R. Henderson, as modified by Karin Meyer
in 1983. Input is a half-stored symmetric matrix. There can be zero rows
and columns present in the matrix.

SUBROUTINE DKMVHF(A,N,V,IFLAG)

C KARIN MEYER

C NOVEMBER 1983

C-----------------------------------------------------------------------

DOUBLE PRECISION A(1),V(1),XX,DMAX,AMAX,ZERO,DIMAX

INTEGER IFLAG(1)

zero=1.D-12

IF(N.EQ.1)THEN

XX=A(1)

IF(DABS(XX).GT.ZERO)THEN

A(1)=1.D0/XX

ELSE

A(1)=0.D0

END IF

RETURN

END IF
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N1=N+1

NN=(N*N1)/2

DO 1 I=1,N

1 IFLAG(I)=0

C

C SET MINIMUM ABSOLUTE VALUE OF DIAGONAL ELEMENTS FOR

C NON-SINGULARITY (MACHINE SPECIFIC!)

ZERO=1.D-12

C-----------------------------------------------------------------------

C START LOOP OVER ROWS/COLS

C-----------------------------------------------------------------------

DO 8 II=1,N

C ... FIND DIAGONAL ELEMENT WITH BIGGEST ABSOLUTE VALUE

DMAX=0.D0

AMAX=0.D0

KK=-N

DO 2 I=1,N

C ... CHECK THAT THIS ROW/COL HAS NOT BEEN PROCESSED

KK=KK+N1-I

IF(IFLAG(I).NE.0)GO TO 2

K=KK+I

IF(DABS(A(K)).GT.AMAX)THEN

DMAX=A(K)

AMAX=DABS(DMAX)

IMAX=I

END IF

2 CONTINUE

C ... CHECK FOR SINGULARITY

IF(AMAX.LE.ZERO)GO TO 11

C ... ALL ELEMENTS SCANNED,SET FLAG

IFLAG(IMAX)=II

C ... INVERT DIAGONAL

DIMAX=1.D0/DMAX

C ... DEVIDE ELEMENTS IN ROW/COL PERTAINING TO THE BIGGEST

C DIAGONAL ELEMENT BY DMAX

IL=IMAX-N

DO 3 I=1,IMAX-1
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IL=IL+N1-I

XX=A(IL)

A(IL)=XX*DIMAX

IF(DABS(XX).LT.0.1D-17)XX=0.D0

3 V(I)=XX

C ... NEW DIAGONAL ELEMENT

IL=IL+N1-IMAX

A(IL)=-DIMAX

DO 4 I=IMAX+1,N

IL=IL+1

XX=A(IL)

A(IL)=XX*DIMAX

IF(DABS(XX).LT.0.1D-17)XX=0.D0

4 V(I)=XX

C ... ADJUST THE OTHER ROWS/COLS :

C A(I,J)=A(I,J)-A(I,IMAX)*A(J,IMAX)/A(IMAX,IMAX)

IJ=0

DO 7 I=1,N

IF(I.EQ.IMAX)THEN

IJ=IJ+N1-I

GO TO 7

END IF

XX=V(I)

IF(XX.NE.0.D0)THEN

XX=XX*DIMAX

DO 5 J=I,N

IJ=IJ+1

IF(J.NE.IMAX)A(IJ)=A(IJ)-XX*V(J)

5 CONTINUE

ELSE

6 IJ=IJ+N1-I

END IF

7 CONTINUE

C ... REPEAT UNTIL ALL ROWS/COLS ARE PROCESSED

8 CONTINUE

C-----------------------------------------------------------------------

C END LOOP OVER ROWS/COLS

C-----------------------------------------------------------------------



158 CHAPTER 8. DKMVHF - INVERSION ROUTINE

C ... REVERSE SIGN

DO 9 I=1,NN

9 A(I)=-A(I)

C ... AND THAT’S IT !

C PRINT 10,N

10 FORMAT(’ FULL RANK MATRIX INVERTED, ORDER =’,I5)

C RETURN RANK AS LAST ELEMENT OF FLAG VECTOR

IFLAG(N)=N

RETURN

C-----------------------------------------------------------------------

C MATRIX NOT OF FULL RANK, RETURN GENERALISED INVERSE

C-----------------------------------------------------------------------

11 IRANK=II-1

IJ=0

DO 14 I=1,N

IF(IFLAG(I).EQ.0)THEN

C ... SET REMAINING N-II ROWS/COLS TO ZERO

DO 12 J=I,N

IJ=IJ+1

A(IJ)=0.D0

12 CONTINUE

ELSE

DO 13 J=I,N

IJ=IJ+1

IF(IFLAG(J).NE.0)THEN

C ... REVERSE SIGN FOR II-1 ROWS/COLS PREVIOUSLY PROCESSED

A(IJ)=-A(IJ)

ELSE

A(IJ)=0.D0

END IF

13 CONTINUE

END IF

14 CONTINUE

C PRINT 15,N,IRANK

C 15 FORMAT(’ GENERALISED INVERSE OF MATRIX WITH ORDER =’,I5,

C 1 ’ AND RANK =’,I5)

IFLAG(N)=IRANK

RETURN
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END

c

c half-stored matrix subscripting function

c

FUNCTION IHMSSF(I,J,N)

IF(I-J)1,1,2

1 IHMSSF=((N+N-I)*(I-1))/2+J

RETURN

2 IHMSSF=((N+N-J)*(J-1))/2+I

RETURN

END
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Chapter 9

CHOLSK - Cholesky
Decomposition

C

C SUBROUTINE FOR CALCULATING Cholesky decomp

C

SUBROUTINE cholsk(a,b,n)

REAL*8 a(1),b(1),x,y,z,w

C

C a IS SYMETRIC, HALF STORED

C b triangular storeD COLUMN-WISE

C n IS THE ORDER OF a

C

C COMPUTE b FIRST

C

b = 0.d0

DO 1 i=1,n

m = ihmssf(i,i,n)

x = a(m)

if(x.gt.0.d0)then

im = i - 1

if(i.gt.1)then

do 2 j=1,im
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y = b(ihmssf(j,i,n))

x = x - y*y

2 continue

endif

else

x=0.d0

endif

20 ma=ihmssf(i,i,n)

b(ma)=0.d0

z=0.d0

if(x.gt.0.d0)then

b(ma) = dsqrt(x)

z = 1.d0/b(ma)

endif

ip = i+1

if(ip.gt.n)go to 1

do 3 j = ip,n

mb = ihmssf(j,i,n)

x = a(mb)

if(i.gt.1)then

do 4 k=1,im

y = b(ihmssf(j,k,n))

w = b(ihmssf(i,k,n))

x = x - y*w

4 continue

endif

b(mb) = x*z

3 continue

1 continue

C

return

end

Below is a routine for creating a vector of random normal deviates
with a particular covariance structure, for Gibbs sampling usage.
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subroutine vgnor(v,w,t,n)

real*8 v(1),w(1),t(1),u,z

integer n

v=0.d0

do 5 i=1,n

call fgnor3(u)

t(i)=u

5 continue

do 7 i=1,n

z = 0.d0

do 6 j=1,i

m=ihmssf(i,j,n)

z = z + w(m)*t(j)

6 continue

v(i) = z

7 continue

return

end
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